Search Results

You are looking at 61 - 70 of 352 items for :

  • "��-carotene" x
  • Refine by Access: All x
Clear All
Free access

Kenneth R. Tourjee, Diane M. Barrett, Marisa V. Romero, and Thomas M. Gradziel

The variability in fresh and processed fruit flesh color of six clingstone processing peach [Prunus persica (L.) Batsch] genotypes was measured using CIELAB color variables. The genotypes were selected based on the relative fruit concentrations of β-carotene and β-cryptoxanthin. Significant (p < 0.0001) differences were found among the genotypes for the L*, a*, and b* color variables of fresh and processed fruit. Mean color change during processing, as measured by ΔELAB, was greatest for `Ross' and least for `Hesse'. A plot of the first two principal components (PCs) obtained from PC analysis of the L*, a*, and b* variables for fresh and processed fruit revealed three clusters of genotypes that match groupings based on the relative concentrations in fresh fruit of carotenoid pigments. Path analysis showed that variation in β-cryptoxanthin concentration was more precisely determined from color data than β-carotene concentration. Chemical names used: β-β-carotene (β-carotene), (3R)-β-β-caroten-3-ol (β-cryptoxanthin).

Open access

Huihui Zhang, Ping Yu, Min Song, Dalu Li, Qianqian Sheng, Fuliang Cao, and Zunling Zhu

rapidly decreased in October, and the decrease from October to November was the lowest in this cultivar. Fig. 2. Dynamic changes in the Chl a content ( A ), Chl b content ( B ), Chl content ( C ), carotene content ( D ), Chl a /Chl b content

Free access

Dean A. Kopsell and Carl E. Sams

regions (430 and 453 nm, respectively) of the visible light spectrum. In contrast, absorption of the carotenoid pigments of lutein (LUT) and β-carotene (BC) are highest in the blue region at 448 and 454 nm, respectively ( Lefsrud et al., 2008

Free access

T. Casey Barickman, Dean A. Kopsell, and Carl E. Sams

et al., 2013 ). The de novo synthesis of carotenoids in the tomato fruit tissue, mainly lycopene and β-carotene, are associated with the color changes from green to red as chloroplasts are transformed to chromoplasts ( Pék et al., 2010 ). Thus, the

Free access

Vuvu D. Manseka and James R. Hicks

Butternut squash was harvested at two stages of maturity in 1994 and was cured for 10 days at 26°C and 80% or 95% relative humidity (RH) before storage in air at 12°C and 65% or 80% RH for 144 days. Fresh weight was assessed right after harvest along with carotene (milligram per 100 grams fresh weight), carbohydrates (milligrams per gram dry weight) and internal color (L, a, b). Percent weight loss and all quality components were assessed immediately after curing and every 48 days thereafter. Weight loss increased with days in storage and was substantially minimized by a humidified environment down to 6%. The 95% curing treatment reduced weight loss to levels below the upper threshold for consumer acceptance (<15%) after 144 days. Maturity at harvest did not affect weight loss during storage, but rather the percent dry weight. Beta-carotene increased by >100% during storage. A positive correlation was established between weight loss and beta-carotene and also between the a value and beta-carotene. Curing at 95% RH obviously reduced beta-carotene content to less than one-third of its corresponding amount in noncured fruit. Sucrose increased as glucose and fructose and starch decreased during storage in cured and noncured fruit. Starch was found to decrease by 26% after 144 days in storage. The lowest levels of starch were found early during storage in fruit cured at 95% RH, but the difference between treatments disappeared by the end of storage.

Free access

Cecilia E. McGregor and Don R. LaBonte

`White Jewel' is a yellow-and-orange fleshed spontaneous mutant of the orange-flesh sweetpotato [Ipomoea batatas (L.) Lam.] cultivar Jewel. Mutations in storage root flesh color, and other traits are common in sweetpotato. The orange flesh color of sweetpotato is due to β-carotene stored in chromoplasts of root cells. β-carotene is important because of its role in human health. In an effort to elucidate biosynthesis and storage of β-carotene in sweetpotato roots, microarray analysis was used to investigate genes differentially expressed between `White Jewel' and `Jewel' storage roots. β-carotene content calculated from a* color values of `Jewel' and `White Jewel' were 20.66 mg/100 g fresh weight (FW) and 1.68 mg/100 g FW, respectively. Isopentenyl diphosphate isomerase (IPI) was down-regulated in `White Jewel', but farnesyl-diphosphate synthase (FPPS), geranylgeranyl diphosphate synthase (GGPS), and lycopene β-cyclase (LCY-b) were not differentially expressed. Several genes associated with chloroplasts were differentially expressed, indicating probable differences in chromoplast development of `White Jewel' and `Jewel'. Sucrose Synthase was down-regulated in `White Jewel' and fructose and glucose levels in `White Jewel' were lower than in `Jewel' while sucrose levels were higher in `White Jewel'. No differences were observed between dry weight or alcohol insoluble solids of the two cultivars. This study represents the first effort to elucidate β-carotene synthesis and storage in sweetpotato through large-scale gene expression analysis.

Free access

Allan F. Brown, Gad G. Yousef, Ivette Guzman, Kranthi K. Chebrolu, Dennis J. Werner, Mike Parker, Ksenija Gasic, and Penelope Perkins-Veazie

neochlorogenic acid), flavan 3-ols (catechin, epicatechin, procyanidins), flavonols (quercetin 3-glucoside and 3-rutinoside), and ANC (cyanidin 3-glucoside and 3-rutinoside) ( Tomás-Barberán et al., 2001 ). The carotenoid profile of peach includes β - carotene, β

Free access

Dean A. Kopsell, Kimberly J. Whitlock, Carl E. Sams, and David E. Kopsell

and tissue concentrations of lutein and zeaxanthin and macular pigment density Amer. J. Clin. Nutr. 71 1555 1562 Kopsell, D.A. Kopsell, D.E. Lefsrud, M.G. Curran-Celentano, J. Dukach, L.E. 2004 Variation in lutein, β-carotene, and chlorophyll

Full access

Anusuya Rangarajan, Betsy A. Ingall, Michael D. Orzolek, and Lewis Otjen

This research was supported in part by USDA-Risk Management Agency, Research and Evaluation Division, Kansas City, Mo., project 99-EXCA-3-0711. Authors would like to Joseph Hillebrandt for carotene analysis.

Free access

Brian J. Just* and Philipp W. Simon

While the carotenoid biosynthetic pathway has been studied several horticultural and agronomic crops, very little information exists for this conserved pathway in carrot, a primary source of dietary carotenoids. Though orange carrots are the most familiar color to Western consumers, yellow, red, and white carrots also exist and have been historically important. Modern carrot breeders are showing renewed interest in these unusual color phenotypes. Beta- and alpha-carotene are the primary pigments in orange carrot roots. Yellow carrots accumulate xanthophylls (oxygenated carotenes), red carrots accumulate lycopene (the precursor to alpha- and beta-carotene), and white carrots accumulate no detectable pigments. Differences between these phenotypes are usually monogenic or oligogenic. Our research has focused on identifying putative genes for carotenoid biosynthetic enzymes in the carrot genome, mapping them, and examining expression patterns in various tissues and carrot root pigment phenotypes. We are using this information to create a carrot pigment biosynthesis function map incorporating biosynthetic enzymes, major carrot color genes, and gene expression information.