Search Results

You are looking at 61 - 70 of 110 items for :

  • " Vicia villosa " x
  • Refine by Access: All x
Clear All
Free access

Erin C. Hill, Mathieu Ngouajio, and Muraleedharan G. Nair

Laboratory experiments were conducted to study the effect of aqueous extracts of hairy vetch (Vicia villosa Roth) and cowpea (Vigna unguiculata (L.) Walp) cover crops on germination and radicle elongation in seven vegetable and six weed species. Lyophilized aqueous extracts of the cover crops were dissolved in reverse osmosis (RO) water to produce seven concentrations: 0.00, 0.25, 0.50, 1.00, 2.00, 4.00, and 8.00 g·L–1. Each treatment had 4 replications and the full experiment was repeated. Experiment 1 (E1) and Experiment (E2) were conducted under similar conditions. In general, seed germination was not affected by extracts of both cover crops. However, radicle growth of all species tested (except common milkweed exposed to cowpea extract) was affected by the cover crop residue extracts. Low concentrations of hairy vetch extract stimulated the radicle growth of carrot, pepper, barnyardgrass, common milkweed, and velvetleaf. Likewise, low concentrations of cowpea extract stimulated the growth of corn, barnyardgrass, and velvetleaf. At higher concentrations all species tested were negatively affected. The order of species sensitivity to the hairy vetch extract, as determined by the IC50 (concentration required to produce 50% radicle inhibition) values, was common chickweed > redroot pigweed> barnyardgrass E1 > carrot E1 > wild carrot > corn > carrot E2 > lettuce > common milkweed > tomato > onion > barnyardgrass E2 > velvetleaf > pepper > cucumber (most sensitive to least sensitive). For cowpea the order was common chickweed > redroot pigweed > corn > tomato > lettuce > wild carrot > pepper > carrot > cucumber > onion> barnyardgrass and velvetleaf. Results suggest that the susceptibility of weeds and vegetable crops to aqueous extracts of hairy vetch and cowpea is dependent on both species and extract concentration.

Full access

Sven Verlinden, Louis McDonald, James Kotcon, and Silas Childs

In 1999, West Virginia University (WVU) established an organic farming systems project with a market garden section consisting of 32 plots measuring 16 × 25 ft arranged in a completely randomized design. Sixteen of these plots were managed as high-input and 16 as low-input plots. High-input plots received 10 tons/acre per year of dairy manure and a rye-vetch (Secale cereale and Vicia villosa) cover crop during each winter season since the inception of the experiment in 1999. Fertility in low-input plots was managed solely with an annual rye-vetch cover crop while both treatments also received 5 tons/acre of mixed species hay used as mulch in 2 of every 4 years. A 4-year rotation of crops, green bean (Phaseolus vulgaris), zucchini (Cucurbita pepo), tomato (Solanum lycopersicum), green pepper (Capsicum annuum), and lettuce (Lactuca sativa) in the Fabaceae, Cucurbitaceae, Solanaceae, and Asteraceae families, was established in 1999 and has been maintained ever since. Soil organic matter (SOM) in the upper 6 inches of the soil profile (4.4% in 1999) has remained unchanged in low-input plots at 5.2% in 2004 and 5.4% in 2014, the year following transition and most recent data collection, respectively. During this same time period, significant increases in SOM from 6.4% in 2004 to 8.7% in 2014 were observed in high-input plots. Bulk density was lower in high-input plots than low-input plots in 2014. Despite these improvements in soil quality, high-input plots showed very high levels of phosphorus and potassium. Over the duration of the experiment, yearly manure application increased yields by 22% in all crops combined; however, individual crops responded quite differently. The yield was 9%, 25%, 24%, and 24% higher in high-input plots than in low-input plots for tomato, pepper, zucchini, and green bean, respectively. Manure application in addition to green manures and hay mulch incorporation was found to result in significant economic returns.

Free access

Nancy G. Creamer, Mark A. Bennett, Benjamin R. Stinner, and John Cardina

Four tomato production systems were compared at Columbus and Fremont, Ohio: 1) a conventional system; 2) an integrated system [a fall-planted cover-crop mixture of hairy vetch (Vicia villosa Roth.), rye (Secale cereale L.), crimson clover (Trifolium incarnatum L.), and barley (Hordeum vulgare L.) killed before tomato planting and left as mulch, and reduced chemical inputs]; 3) an organic system (with cover-crop mixture and no synthetic chemical inputs); and (4) a no-input system (with cover-crop mixture and no additional management or inputs). Nitrogen in the cover-crop mixture above-ground biomass was 220 kg·ha-1 in Columbus and 360 kg·ha-1 in Fremont. Mulch systems (with cover-crop mixture on the bed surface) had higher soil moisture levels and reduced soil maximum temperatures relative to the conventional system. Overall, the cover-crop mulch suppressed weeds as well as herbicide plots, and no additional weed control was needed during the season. There were no differences in the frequency of scouted insect pests or diseases among the treatments. The number of tomato fruit and flower clusters for the conventional system was higher early in the season. In Fremont, the plants in the conventional system had accumulated more dry matter 5 weeks after transplanting. Yield of red fruit was similar for all systems at Columbus, but the conventional system yielded higher than the other three systems in Fremont. In Columbus, there were no differences in economic return above variable costs among systems. In Fremont, the conventional systems had the highest return above variable costs.

Open access

Rafael A. Muchanga, Toshiyuki Hirata, and Hajime Araki

Cover crops and compost application may influence soil quality and productivity of fresh-market tomatoes. The effects of hairy vetch (HV) (Vicia villosa Roth) and livestock compost on soil C and N stocks, N availability, and tomato yield were evaluated for 2 years in a plastic high tunnel. Averaged across years, soil C and N stocks increased in plots incorporating hairy vetch and compost more than in plots with no hairy vetch and compost. When compared with baseline stocks (initial soil C and N stocks before the initiation of the examination), soil C stock increased by 3%, 2.8%, 2.6% in the HV treatment, the compost treatment, and the HV and compost treatment, respectively. In contrast, a 1.85% loss of soil C stock was observed in a no HV and no compost (bare) treatment. Soil N stocks increased in all treatments, with the greatest increase in the compost treatment (26%) and the lowest in the bare treatment (9.3%). Averaged across sampling dates, the HV treatment exhibited the greatest soil N availability and nitrate levels in leaf petiole in both years, whereas the bare treatment exhibited the lowest soil N availability and nitrate levels in leaf petiole. HV + compost and compost treatments showed a similar influence on soil N availability, but HV + compost exhibited greater nitrate levels in leaf petiole than the compost treatment. The marketable and total yields were 10% to 15% greater in the HV and the compost treatments than in the bare treatment. N uptake was 17% to 38% greater in the HV treatment than in the other treatments. Because of unstable cover crop production in the northern region, a combined application of cover crops and compost may be one of the best practices to compensate for low cover crop biomass production by increasing organic matter input to the soil, thereby improving soil quality and tomato yield.

Free access

Kevin Charles*, Mathieu Ngouajio, and Darryl Warncke

Cover crops are commonly used to improve soil fertility and enhance crop performance. Field experiments were conducted to determine the effects of different cover crops and fertilizer rates on celery growth and development. The experiment was a two-way factorial with a split plot arrangement. The main plot factor was cover crop and included cereal rye (Secale cereale), hairy vetch (Vicia villosa), oilseed radish [Raphanus sativus (L.) var. oleiferus Metzg (Stokes)], and no cover crop. The sub-plot factor was fertilizer rate with three levels: full (160, 80, 400), half (80, 40, 200), and low (80, 0, 0) kg/ha of N, P2 O5, K2 O, respectively. The cover crops were grown during Fall 2002 and incorporated prior to celery transplanting in May 2003. During celery growing season, stalk length, above and below ground biomass were assessed at 23, 43, 64, and 84 days after planting (DAP). The biomass produced by oilseed radish (719 g/m2) exceeded that of cereal rye (284 g/m2) and hairy vetch (181 g/m2). At 23 and 43 DAP, celery fresh root (4.8 and 11.4 g/root) and shoot (6.1 and 53.6 g/shoot) biomass of oilseed radish exceeded the values of all other cover crops. At 84 DAP however, celery shoot fresh weight was similar in all cover crop treatments. Celery plants were tallest in the cereal oilseed radish and rye treatments early in the season; however final plant height at harvest was not affected by type of cover crop. The amount of fertilizer applied had a significant effect on celery growth starting at 64 DAP and continued until harvest. These results suggest that the large biomass produced by oilseed radish played an important role in early season celery growth.

Full access

K. Delate, C. Cambardella, and A. McKern

With the continuing 20% growth rate in the organic industry, organic vegetable crop production has increased to 98,525 acres in the United States. The requirement for certified organic vegetable producers to implement a soil-building plan has led to the development of soil fertility systems based on combinations of organic fertilizers and cover crops. To determine optimal soil fertility combinations, conventional and organic bell pepper (Capsicum annuum) production was evaluated from 2001 to 2003 in Iowa, comparing combinations of two synthetic fertilizers and three compost-based organic fertilizers, and a cover crop treatment of hairy vetch (Vicia villosa) and rye (Secale cereale) in a strip-tilled or fully incorporated cover crop system. Organic pepper growth and yields equaled or surpassed conventional production when nitrogen (N) was provided at 56 or 112 kg·ha−1 from compost-based organic fertilizer. Soil analysis revealed higher N in plots where cover crops were tilled compared with strip-tilled plots, leading to recommendations for sidedressing N in strip-tilled organic pepper production. Increased incidence of disease was also detected in strip-tilled plots. Postharvest weight loss after 6 weeks in storage was similar in organic and conventional peppers. The addition of calcium and sulfur products in conventional or organic fertilizer regimes did not increase pepper production or postharvest storage potential. Despite application challenges, cover crops will remain as critical components of the organic farm plan for their soil-building benefits, but supplementation with approved N sources may be required for optimal pepper production. Organic growers should conduct their own tests of organic-compliant soil amendments to determine cost effectiveness and value for their site before large-scale application.

Free access

Ann Toren Seigies and Marvin Pritts

In July 2001, a study was established in a field with a 30-year history of perennial strawberry production to examine effects on replant disorder of 12 different species of preplant cover crops, soil fumigation (methyl bromide plus chloropicrin), and fallow management. In May 2002, strawberries (`Jewel') were planted into pots containing soils with the incorporated cover crops, grown for 1 year, and then fruited. Strawberry yields in 2003 were highest in pots containing indiangrass (Sorghastrum avenaceum) and brown mustard (Brassica juncea) -incorporated soils, resulting in 32% and 28%, respectively, higher yield than plants in pots containing untreated, bare fallow soil. Yield was lowest in fumigated soil or soil incorporated with sunnhemp (Crotolaria juncea), having 19% and 10% less yield than the fallow treatment, respectively. In Aug. 1999, a complementary study was established in a field with a 7-year history of continuous perennial strawberry production to examine the effects of single species and multiple species rotations on replant disorder, bacterial populations, and fungal pathogens over 2 fruiting years. Cover crop treatments included various monocultures and sequences of perennial alfalfa (Medicago sativa), brown mustard, kale (B. oleracea `Winterbor'), sweet corn (Zea mays `Saccharata'), rye (Secale cereale), hairy vetch (Vicia villosa), marigold (Tagetes patula `Nema-gone'), oats (Avena sativa `Newdak'), and sudangrass (Sorghum bicolor × S. sudanese). These rotations were compared with the effects of fumigation using methyl bromide with chloropicrin (99:1), continuous strawberry, and bare fallow. Symptoms of replant disorder developed in the continuous strawberry plots within a few months of planting. Plants in the fumigation treatment produced greater fruit yield than all other treatments in 2003, 139% more than plants from the continuous strawberry treatment. Strawberry plants grown in the kale/sweet corn/rye treatment had consistently high yield, and both the hairy vetch/marigold/rye and the oats/sudangrass/rye treatments led to marked improvement over the continuous strawberry treatment. Plants from the brown mustard treatment also were more vigorous and productive than plants from the continuous strawberry treatment during 2002 despite having relatively low foliar biomass and a relatively high level of fungal infection on strawberry plant roots. In the field, symptoms of replant disorder were best overcome by fumigation with methyl bromide or multiple species rotations, particularly that of kale followed by sweet corn and rye. Although Rhizoctonia levels were associated with poor root health, general fungal and bacterial root infection rates were not consistently associated with the presence of visible symptoms of replant disorder nor with strawberry plant growth and productivity.

Free access

Sidat Yaffa, Bharat P. Singh, Upendra M. Sainju, and K.C. Reddy

Sustainable practices are needed in vegetable production to maintain yield and to reduce the potential for soil erosion and N leaching. We examined the effects of tillage [no-till (NT), chisel plowing (CP), and moldboard plowing (MP)], cover cropping [hairy vetch (Vicia villosa Roth) vs. winter weeds], N fertilization (0, 90, and 180 kg·ha-1 N), and date of sampling on tomato (Lycopersicon esculentum Mill.) yield, N uptake, and soil inorganic N in a Norfolk sandy loam in Fort Valley, Ga. for 2 years. Yield was greater with CP and MP than with NT in 1996 and was greater with 90 and 180 than with 0 kg·ha-1 N in 1996 and 1997. Similarly, aboveground tomato biomass (dry weight of stems + leaves + fruits) and N uptake were greater with CP and MP than with NT from 40 to 118 days after transplanting (DAT) in 1996; greater with hairy vetch than with winter weeds at 82 DAT in 1997; and greater with 90 or 180 than with 0 kg·ha-1 N at 97 DAT in 1996 and at 82 DAT in 1997. Soil inorganic N was greater with NT or CP than with MP at 0- to 10-cm depth at 0 and 30 DAT in 1996; greater with hairy vetch than with winter weeds at 0- to 10-cm and at 10- to 30-cm at 0 DAT in 1996 and 1997, respectively; and greater with 90 or 180 than with 0 kg·ha-1 N from 30 to 116 DAT in 1996 and 1997. Levels of soil inorganic N and tomato N uptake indicated that N release from cover crop residues was synchronized with N need by tomato, and that N fertilization should be done within 8 weeks of transplanting. Similar tomato yield, biomass, and N uptake with CP vs. MP and with 90 vs. 180 kg·ha-1 N suggests that minimum tillage, such as CP, and 90 kg·ha-1 N can better sustain tomato yield and reduce potentials for soil erosion and N leaching than can conventional tillage, such as MP, and 180 kg·ha-1 N, respectively. Because of increased vegetative cover in the winter, followed by increased mulch and soil N in the summer, hairy vetch can reduce the potential for soil erosion and the amount of N fertilization required for tomato better than can winter weeds.

Free access

S.B. Sterrett, H.E. Hohlt, and C.P. Savage Jr.

Off-site movement of sediment, nutrient and agricultural chemicals from plasticulture production of green-pack tomatoes on water quality is a serious environmental concern, particularly for the clam aquaculture industry of eastern Virginia. Thus, the development of ecologically sound, economically sustainable cultural management strategies for tomato (Lycopersicon esculentum Mill.) production is needed. Two plantings were made within each of the three tomato harvest seasons [summer, bridge (late summer) and fall] in 1998 and 1999 (one summer crop in 1999). Between-bed treatments included clean culture or pearl millet [Pennisetum glaucum(L.) R. Br.] sown at bed establishment. On-bed treatments included standard plasticulture with fumigation on a 76-cm-wide bed (std), plasticulture without fumigation on a 76-cm-wide bed (std-fum), plasticulture on a 61-cmbed with fumigation (narrow) and organic mulch [wheat straw (Triticum aestivum L.) in 1998; desiccated hairy vetch (Vicia villosa Roth.) in 1999]. Total and marketable yields for the three plasticulture on-bed treatments (std, std-fum and narrow) were similar in 1998 and 1999. Yield was suppressed for the organic mulch on-bed treatments in all but the bridge plantings in 1999. Improved yield with plasticulture treatments and high market price for the summer crop in 1998 resulted in elevated crop value and return to land and management (return) compared to that of organic mulch. The return for later plantings was low, but positive. Return was negative for both bridge and the first fall crops in organic mulch in 1998. Low yields in all treatments and low prices in 1999 resulted in negative to negligible return for on-bed treatments in all but the summer planting using plasticulture. Return was consistently lower with organic mulch compared to plasticulture for the high value summer crop in Virginia with between-bed millet in 1998 and with or without millet in 1999. The use of organic mulch on the beds in this study was not economically feasible for the high value summer crops. Adjustments (desiccation of cover, control of weeds) in cultural management of the between-bed management strategy are needed before large-scale commercial implementation will occur.

Free access

Dana Jokela and Ajay Nair

Organic no-till and strip-till systems have gained attention because of their reported capacity to enhance soil health and suppress annual weeds. This study, conducted at the Horticulture Research Station, Ames, IA, over 2 years (2013–14 and 2014–15) compared a cover crop–based no tillage (NT), strip tillage (ST), and conventional tillage (CT) in transitional organic broccoli (Brassica oleracea L. var. italica) production, with data collected on broccoli yield and quality, plant health, weed suppression, soil temperature, and cost of production. A cover crop mixture of cereal rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth.) was seeded in all plots in September, and was ended by rolling and crimping (NT and ST) or soil incorporation (CT) in late spring the following year. Each whole-plot tillage treatment was split into two subplot fertility treatments—one based entirely on organic preplant granular fertilizer, and the other split between preplant granular fertilizer and postplanting fertigation—to test the effect of fertigation on yield and plant growth under the typically nitrogen (N)-limited reduced tillage conditions. In 2014, yield of broccoli was highest in CT treatments, averaging 5.4 t·ha−1, with no difference between ST and NT treatments. In 2015, yields were equal among tillage treatments, averaging 20.0 t·ha−1. Changing the timing of fertilizer application through the use of fertigation did not affect yield. Weed density and biomass were lowest in the between-row (BR) regions of NT and ST plots in 2014, indicating effective early-season weed suppression. In 2015, NT and ST plots generally had lower weed biomass and density compared with CT plots, but weed growth in BR and in-row (IR) regions of NT and ST plots was similar. Soil temperature was highest in CT plots throughout the year, and higher in ST than in NT plots only during some periods. While production costs did vary slightly across treatments, profit per hectare was most strongly affected by yield. Our findings suggest that cover crop–based organic NT and ST systems may be viable options for organic broccoli growers.