Search Results

You are looking at 51 - 60 of 932 items for :

  • "plant growth regulators" x
  • Refine by Access: All x
Clear All
Free access

Mélanie Leclerc, Claude D. Caldwell, Rajasekaran R. Lada, and Jeffrey Norrie

Field experiments were conducted in 2002 and 2003 to evaluate the effects of selected plant growth regulators on propagule production in Hemerocallis `Happy Returns' and Hosta `Gold Standard'. Benzyladenine (BA), chlormequat chloride (Cycocel), ethephon (Ethrel), prohexadione calcium (Apogee), and an experimental preparation of commercial seaweed extract (Acadian Seaplants Limited Liquid Seaweed Concentrate) amended with BA and IBA were tested at two times of application and three rates of application. Results with Hemerocallis showed that the application of the seaweed/PGR mixture at 3000 mg·L–1, Cycocel at 3000 mg·L–1 or BA at 2500 mg·L–1 applied at flowering, increased the number of plants producing two divisions compared to control plants. In Hosta, no increase in divisions under any treatments was observed.

Free access

Sabrina L. Shaw, William F. Hayslett, and Eddie B. Williams

A one-time application of fish emulsion 2 days before the application of plant growth regulators (PGR) showed an overriding effect on the growth of pansies. Blue/blotch shades of `Medallion' pansies were placed on a constant feed program of 100 ppm Peat Lite 20N–10P–20K, with half of the pansies receiving an additional one-time supplement of fish emulsion. PGRs and rates included B-Nine, 0.5% (used as the control); uniconazole, 2 and 4 ppm; and paclobutrazol, 16 and 25 ppm. Parameters taken included plant height, top fresh weight, top dry weight, days to anthesis, and visual appearance. Significant differences were noted in the plants receiving the supplement for plant dry weight, plant height, and visual appearance. Plants receiving fish emulsion grew taller and denser than those on constant feed alone despite the effects of the PGRs.

Free access

Bruce P. Bordelon and J.N. Moore

Various plant growth regulators were used to stimulate endosperm and embryo development in four stenospermic grape cultivars. Five antigibberellins were applied to clusters at 1000 and 100 ppm two weeks prior to bloom. Two cytokinins were applied at 1000, 500, and 250 ppm 20 days after bloom. Combinations of the treatments were also made. Data collected included: 1) cluster weight, 2) berry weight, 3) number of `sinker' and `floater' seed traces, 4) `sinker' weight and 5) percent germination. Significant differences were found among treatments for some of the variables. Differences also occurred among cultivars. Percent germination was greater for cultivars with large seed traces. The technique appears to have promise as an alternative to ovule culture/embryo rescue for intercrossing stenospermic grapes.

Free access

Raja Ram, Debasish Mukherjee, and Sandeep Manuja

The effects of BA, ethephon, and GA3 on freshly harvested cormels of three cultivars of Gladiolus sp. were studied for 3 years. The treatment with 400 mg·L-1 ethephon significantly reduced the dormancy period by 17.5 days as compared to control, while BA and GA3 were found to be less effective. Among all treatments, ethepon at 400 mg·L-1 was found to be the most effective in altering the days to sprout, sprouting percentage, corm size and production and development of cormels. While GA3 at 100 mg·L-1 increased growth of corms and cormels, BA at 25 mg·L-1 increased growth of corms and cormels. BA at 25 mg·L-1 only influenced the sprouting percentage of cormels. Along with reducing the dormancy period, the plant growth regulators stimulated growth and development of corms and cormels. Chemical names used: benzyladenine (BA); 2-chloroethylphosphonic acid (ethephon); gibberellic acid (GA3).

Free access

J. Pablo Morales-Payan

Field studies were conducted in the Dominican Republic to determine the effect of several plant growth regulators on the yield of `Jira' eggplant. Treatments consisted of aqueous solutions of folcysteine (25, 50, 75 ppm), giberellic acid 3 (10, 20, 30 ppm), kinetine (25, 50, 75 ppm), naphthalenacetic acid (NAA) (25, 50, 75 ppm), 2,3,4-dichloro-phenoxy-triethyl-amine hydrochloride (DCPTA) (25, 50, 75 ppm), triacontanol (5, 10, 15 ppm), ethanol (5, 10, 15%), and chlormequat (50, 100, 150 ppm) sprayed at early flowering, directed to the crop upper leaves and flowers. A control treatment (no plant growth regulators applied) was also included. A randomized complete-block design with four replications was utilized. Experimental units were two rows of 10 plants at a 1.0 × 0.4-m distancing. Eggplant fruit set and yield were determined after 10 harvests performed at 3-day intervals. Analysis of variance and mean comparison tests were performed on the resulting data. `Jira' eggplant fruit set and yield was significantly improved by folcysteine, giberellic acid 3, and NAA, but not by kinetine, DCPTA, ethanol, triacontanol, or chlormequat. Eggplant yield increased as folcysteine rate increased from 0 to 50 ppm, but no further yield increase was obtained when increasing the rate from 50 to 75 ppm. Similarly, eggplant yield significantly increased as gibberellic acid increased from 0 to 20 ppm, but not when rates increased from 20 to 30 ppm. With NAA, eggplant fruit set and yield significantly increased above that of control plants when 25 ppm was applied, with no significant yield increase at higher rates. Results indicate that the yield of `Jira' eggplants could be enhanced by the treatments with either folcysteine, NAA, or gibberellic acid hereby described.

Full access

C.L. Gupton

Several concentrations of mefluidide (Embark), a plant growth regulator; sethoxydim (Poast), a grass herbicide; and triclopyr (Rely) a nonselective herbicide, were evaluated to determine if italian ryegrass (Lolium multiflorum Lam.) growth could be suppressed. Ryegrass grows prolifically during the winter in states adjacent to the Gulf of Mexico and may serve as a living mulch for strawberry (Fragaria×ananassa Duch.) and other winter crops if its growth can be controlled. Different chemicals and concentrations were screened over 5 years for their efficacy to produce living mulch. Mefluidide produced good ryegrass control but was not evaluated after Study 1 because it is designed for industrial use and does not have an U.S. Environmental Protection Agency fruit crop label. Triclopyr, which has a label for several fruit crops, was studied only in the final year and it provided desired ryegrass control at the 0.016 and 0.030 mL·L-1 (parts per thousand) rate. Prime oil (paraffin base petroleum oil + polyol fatty acid esters) concentration affected results when sprayed with various sethoxydim rates. We concluded that 0.156 mL·L-1 sethoxydim plus 0.25 mL·L-1 prime oil will control ryegrass growth at the desired level (reduce growth by 40% to 50%) for living mulch. These rates are too low to cause much ryegrass browning. Chemical names used: N-[2,4dimethyl-5-[[(trifluoromethyl)-sulfony]amino]phenyl]acetamide, 2-[1-(ethoxylmino)buty1]-5-[2-(ethylthio)propy1]-3-hydroxy-2-cyclohexen-1-one), and ammonium-Dl-homoalanin-4-yl-(methyl) phosphinate.

Free access

Guochen Yang and Paul E. Read

A forcing solution containing 200 mg 8-hydroxyquinoline citrate per liter and 2% sucrose has been demonstrated to extend the season for obtaining softwood growth suitable for use as explants in micropropagation (Yang & Read 1989). Forcing dormant woody stems in the off-season in this fashion also enhances the macropropagation of woody plant species by providing softwood outgrowth that can be rooted as softwood cuttings. GA3, IBA, IAA and NAA were incorporated into softwood growth which was later used as cuttings for rooting by adding plant growth regulators at various concentrations to the forcing solution. GA3 incorporated into the forcing solution hastened bud break, increased shoot elongation, but inhibited rooting of softwood cuttings taken from stems forced in this manner. IBA, IAA and NAA in the forcing solution exhibited typical auxin effects on rooting of cuttings by increasing root number per cutting and root elongation. In order to expedite macropropagation of woody plants, GA3 and IBA were added SEQUENTIALLY to the forcing solution. Addition of IBA to fresh forcing solution following initial use of GA3 in the forcing solution counteracted the negative effects of GA3 and stimulated rooting. This protocol is proposed as a method to assist propagation in rooting difficult species by softwood cuttings in the off-season.

Free access

H. Yakushiji, K. Morinaga, and Y. Koshita

The effects of 2,3,5-triiodobenzoic acid (TIBA) and naphthaleneacetic acid (NAA) on berry maturation and photoassimilates partitioning were investigated. Five-year-old potted `Kyoho' grape grown under a non-heating glasshouse were used. TIBA (200 mg/L) and NAA (200 mg/L) were applied to clusters at the beginning of veraison (45 days after full bloom). TIBA application increased not only soluble solids concentration in the juice but also anthocyanin content of peel, compared with those of control. On the other hand, the application of NAA reduced berry growth and delayed the berry maturation with harder flesh, lower soluble solids, higher acidity and poor coloration. In order to examine the effect of both plant growth regulators on photoassimilates partitioning in plant tissues, the whole plants were fed with 13CO2 at 10 days and 20 days after application of TIBA and NAA. The 13C distribution of pericarp and peel in NAA application was found on the lowest among the treatments. However, there were no significant differences in the 13C distribution and 13C absorption rate of pericarps between TIBA and control. These results indicate that NAA weakened the sink activity in grape berries, resulted in smaller berry size and the delay of maturation, whereas the berry ripening induced by TIBA application could not be explained by the distribution of photoassimilates in grape berries.

Free access

Guochen Yang and P. E. Read

Vanhoutte's spiraea has been propagated in vitro using explants from softwood growth of dormant stems forced in a solution containing 200 mg/l 8-hydroxyquinoline citrate (8-HQC) and 2% sucrose (Yang and Read, 1989). Objectives to further utilize this system were to determine the feasibility of applying plant growth regulators (PGR) via the forcing solution to softwood growth from forced dormant stems and to study the resulting influence on in vitro culture. BA and GA3 were placed in the forcing solution at various concentrations, including a zero PGR control. Explants were cultured on Linsmaier and Skoog (LS) medium containing zero PGR or different amounts of BA or thidiazuron (TDZ) or combinations of BA and IAA. Control explants placed on LS medium supplemented with 5uM BA with or without 1 or 5uM IAA, or with 0.5 or 0.75 uM TDZ alone produced the best shoot proliferation. BA in the forcing solution stimulated micropropagation, while GA3 caused less proliferation than explants from control solutions. Forcing solutions containing PGR are useful for manipulating responses of plant tissues cultured in vitro and for studying PGR influence on woody plant physiology.

Free access

Wayne L. Schrader

Artichoke is a cool-season perennial crop that is grown as an annual from seed in southern California. Growing artichokes as annuals from seed allows growers to harvest during the winter from November to March. Artichoke seed is planted in May, transplants are moved to the field in July, and harvesting begins as early as November in years with relatively cool fall weather. Hot fall weather during September and October suppresses plant growth and causes premature flowering, which lowers yield and average bud size. Plant growth regulator (PGR) treatments were evaluated in annual artichokes to determine if they could reduce the adverse effects of hot weather during September and October. Treatments included multiple applications of apogee (gibberellin inhibitor), retain (ethylene inhibitor), apogee + retain, cytokinin, and control plots. Harvestable buds were counted as a measure of earlier flowering induced by hot weather. Apogee and cytokinin show promise in reducing heat stress during hot fall artichoke production. Other PGR treatments increased the number of harvestable buds compared to control plots.