Search Results

You are looking at 51 - 60 of 801 items for :

  • "fruit ripening" x
  • Refine by Access: All x
Clear All
Free access

Jingyi Lv, Yonghong Ge, Canying Li, Mengyuan Zhang, and Jianrong Li

identified as the major hormone that initiates and controls ripening in fleshy fruit for longer than a decade ( Liu et al., 2015 ). However, fruit ripening is a genetically programmed process that is coordinated by a complex network of endogenous hormones. In

Free access

Muhammad Marrush, M. Yamaguchi, and M.E. Saltveit

Seeds in fruit of bell pepper (Capsicum annuum `California Wonder') plants grown in nutrient solutions deficient in potassium (<3 mmol·L-1) showed a higher incidence of sprouting (i.e., vivipary) than seeds in fruit from plants grown at adequate potassium levels (6 mmol·L-1). Tissue analysis showed a progressive drop in the leaf content of potassium with increasing plant maturation for all levels of potassium nutrition. However, potassium in fruit and seeds increased at later stages of maturity. ABA was extracted, isolated and identified from bell pepper seeds obtained from fruit grown under the potassium treatments (0.0, 0.6, 1.5, 3.0, and 6.0 mmol·L-1) at five fruit maturity stages (mature-green to overripe). At early fruit maturity stages, there were no significant differences in seed ABA content in the fruit from the different potassium treatments. However, differences in ABA content and vivipary among the potassium treatments became highly significant as the fruit matured. The concentration of ABA in seeds of potassium-deficient treatments was ≈14% of the control (0.4 versus 2.8 μg·g-1 dry mass). High concentrations of ABA in bell pepper seeds were associated with low incidence of vivipary and high potassium content in the leaves, fruit and nutrient solution.

Free access

Allan B. Woolf, Elspeth A. MacRae, Karen J. Spooner, and Robert J. Redgwell

Modifications to solubilized cell wall polyuronides of sweet persimmon (Diospyros kaki L. `Fuyu') were examined during development of chilling injury (CI) during storage and in response to heat treatments that alleviated CI. Storage at 0 °C caused the solubilization of a polyuronide fraction that possessed a higher average molecular mass than polyuronide solubilized during normal ripening. The viscosity of this fraction was 30-times that of normally ripened fruit. Fruit heat-treated before or following storage contained a soluble polyuronide fraction with a markedly lower average molecular mass and decreased viscosity than in chilling injured fruit. Heat treatment also impeded an increase in viscosity of the cell wall material if applied before storage. CI (gelling) was related to the release of polyuronide from the cell wall during storage and its lack of subsequent degradation. Heat treatments retarded polyuronide release but promoted degradation of solubilized polyuronides.

Free access

Sylvia M. Blankenship and Edward C. Sisler

Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C50 values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 μl ethylene/liter-1, respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of 14C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

Free access

Akihiro Itai and Naoko Fujita

climacteric type fruits showed a rise in respiration and ethylene production, and nonclimacteric-type fruit did not show a rise in respiration and ethylene production during fruit ripening ( Downs et al., 1991 ; Itai et al., 1999 , 2003a ; Kitamura et al

Free access

Yunqing Zhu, Wenfang Zeng, Xiaobei Wang, Lei Pan, Liang Niu, Zhenhua Lu, Guochao Cui, and Zhiqiang Wang

The plant cell wall is a highly organized structure composed of many different polysaccharides, proteins, and phenolic compounds. Fruit ripening involves extensive depolymerization of pectin, as well as other modifications to cell-wall components

Free access

Avinoam Nerd, Avraham Karady, and Yosef Mizrahi

Field experiments were conducted to examine the effect of fertilization and short periods of drought on the out-of-season winter crop in prickly pear [Opuntia ficus-indica (L.) Mill.]. In addition, the winter and summer crops were compared regarding floral bud production and fruit characteristics. Under both continuous fertigation (N, P, K applied with the irrigation water) and continuous irrigation, the number of floral buds per plant was much lower in the winter than in the summer crop. Fertilization increased production of floral buds in both crops, but to a greater extent in the winter crop. The increase in floral bud production in fertilized plants was associated with an increase in NO3-N content in the cladodes. Suspension of fertigation for 4 or 8 weeks immediately after the summer harvest decreased cladode water content and delayed and reduced floral bud emergence as compared with continuous fertigation (control) or late drought (4 or 8 weeks) applied 4 weeks after the summer harvest. The plants subjected to early drought suffered from high mortality of floral buds. The fruits of the winter crop ripened in early spring, following the pattern of floral bud emergence the previous autumn. Mean fresh weight and peel: pulp ratio (w/w) were higher in fruits that ripened in the spring (winter crop) than in fruits that ripened in the summer.

Free access

Allan B. Woolf and Michael Lay-Yee

`Hass' avocados [Persea americana Mill.] were pretreated in water (38 °C for up to 120 min) immediately before 50 °C hot water treatments of up to 10 min. Fruit were stored for 1 week at 6 °C and ripened at 20 °C. External browning was evaluated immediately upon removal from cold storage, and fruit quality evaluated when fruit were ripe. Pretreatments at 38 °C tended to reduce the levels of external browning, skin hardening, and internal disorders, such as tissue breakdown and body rots, that were associated, and increased, with longer hot water treatments. A pretreatment of 60 min was the most effective for eliminating external browning, and reducing hardening of the skin when fruit were ripe following hot water treatment. Examination of heat shock protein (hsp) gene expression in avocado skin tissue, showed that levels of hspl7 and hsp70 homologous mRNA increased with increasing pretreatment duration. The results demonstrate that 38 °C pretreatments increase the tolerance of avocado fruit to subsequent hot water treatments.

Free access

Allan B. Woolf

`Hass' avocado (Persea americana Mill.) fruit were heat treated in water at 38 °C for 0 to 120 minutes, and stored at 0.5 °C for up to 28 days. After storage, fruit were ripened at 20 °C and their quality evaluated. External chilling injury (CI) developed during storage in nonheated fruit. Skin (exocarp) sectioning showed that browning developed from the base of the exocarp, and with longer storage, this browning moved outwards toward the epidermis. Longer durations of hot water treatment (HWT) progressively reduced CI; 60 minutes was the optimal duration that eliminated external CI, while best maintaining fruit quality. Concomitantly, electrolyte leakage of heated skin tissue increased ≈70% during storage, whereas electrolyte leakage of nonheated skin tissue increased ≈480% over the same period. Thus, significant protection was conferred by HWTs against low temperature damage to avocados and these effects are reflected in the morphology and physiology of the skin tissue.

Free access

Muharrem Ergun, Jiwon Jeong, Donald J. Huber, and Daniel J. Cantliffe

`Galia' (Cucumis melo var. reticulatus L. Naud. `Galia') melons exhibit relatively short postharvest longevity, limited in large part by the rapid softening of this high quality melon. The present study was performed to characterize the physiological responses of `Galia' fruit harvested at green (preripe) and yellow (advanced ripening) stages and treated with 1-methylcyclopropene (1-MCP) before storage at 20 °C. Treatment with 1.5 μL·L-1 1-MCP before storage delayed the climacteric peaks of respiration and ethylene production of green fruit by 11 and 6 d, respectively, and also significantly suppressed respiration and ethylene production maxima. Softening of both green and yellow fruit was significantly delayed by 1-MCP. During the first 5 d at 20 °C, the firmness of green control fruit declined 66% while 1-MCP-treated fruit declined 46%. By day 11, firmness of control and 1-MCP-treated green fruit had declined about 90% and 75%, respectively. The firmness of control yellow fruit stored at 20 °C declined 70% within 5 d while 1-MCP-treated fruit declined 30%. The 1-MCP-induced firmness retention was accompanied by significant suppression of electrolyte leakage of mesocarp tissue, providing evidence that membrane dysfunction might contribute to softening of `Galia' melons. The mesocarp of fruit harvested green and treated with 1-MCP eventually ripened to acceptable quality; however, under the treatment conditions (1.5 μL·L-1 1-MCP, 24 h) used in this study, irreversible suppression of surface color development was noted. The disparity in ripening recovery between mesocarp versus epidermal tissue was considerably less evident for fruit harvested and treated with 1-MCP at an advanced stage of development. The commercial use of 1-MCP with `Galia'-type melons should prove of immense benefit in long-term storage and/or export situations, and allow for retention of quality and handling tolerance for fruit harvested at more advanced stages of ripening.