Search Results

You are looking at 51 - 60 of 167 items for :

  • "Meloidogyne incognita" x
  • Refine by Access: All x
Clear All
Free access

J.A. Thies, J.D. Mueller, and R.L. Fery

The southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] is a serious pest of pepper (Capsicum annuum L.). Currently, methyl bromide is used for nematode control, but the pending withdrawal of this fumigant from the United States market has resulted in a need for effective alternative root-knot nematode management measures. We evaluated the effectiveness of resistance of `Carolina Cayenne' relative to the susceptible genotypes `Early Calwonder' and PA-136 in greenhouse, microplot, and field studies. In all tests, `Carolina Cayenne' exhibited exceptionally high resistance (minimal galling, minimal nematode reproduction, and no yield reduction) to M. incognita; `Early Calwonder' and PA-136 were highly susceptible. In a test conducted in a heavily infested field, `Carolina Cayenne' outyielded PA-136 by 339%. The exceptionally high resistance exhibited by `Carolina Cayenne' provides an alternative to methyl bromide and other fumigant nematicides for managing root-knot nematodes in pepper.

Free access

Richard L. Fery, Philip D. Dukes, and Judy A. Thies

A series of greenhouse and field studies was conducted over 9 years to characterize three new sources of resistance in cowpea [Vigna unguiculata (L.) Walp.] to the southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] and to determine if the resistances are conditioned by genes allelic to the Rk root-knot nematode resistance gene in `Mississippi Silver'. Three plant introductions (PI), PI 441917, PI 441920, and PI 468104, were evaluated for reaction to M. incognita in four greenhouse tests, and in every test each PI exhibited less galling, egg mass formation, or egg production than `Mississippi Silver'. F2 populations of the crosses between `Mississippi Silver' and each of the three resistant PIs were also evaluated for root-knot nematode resistance in a greenhouse test. None of the F2 populations segregated for resistance, indicating that PI 441917, PI 441920, and PI 468104 each has a gene conditioning resistance that is allelic to the Rk gene in `Mississippi Silver'. Our observations on the superior levels of resistances exhibited by PI 441917, PI 441920, and PI 468104 suggest that the allele at the Rk locus in these lines may not be the Rk allele, but one or more alleles that condition a superior, dominant-type resistance. The availability of additional dominant alleles would broaden the genetic base for root-knot nematode resistance in cowpea.

Free access

A. G. Hunter and O. L. Chambliss

Screening for resistance to blackeye cowpea mosaic virus (BlCMV) and rootknot nematode on the same plant is possible if the two pathogens do not interact significantly. To determine if such interactions were present four cultivars were planted in 72-cell styrofoam flats, with a combination of BlCMV and nematode inoculations (--, -+, +-, and ++). `Freezegreen' is known to be susceptible to both pathogens, `Mississippi Silver' is resistant to both, `California Blackeye #5' is susceptible to BlCMV, and `Worthmore' is resistant to BlCMV. Nematode treated seeds were inoculated at planting with 2,000 eggs of (Meloidogyne incognita Race 3); BlCMV was inoculated on primary leaves a week later. Plants were visually rated for symptoms: either negative or positive for BlCMV and 1-5, no galls and heavily galled respectively, for rootknot. Analyses of variance using percentage of plants negative for virus symptoms or average nematode score as the dependent variable, resulted in non-significant virus × nematode interactions. Results by cultivar indicated simultaneous screening did not change their resistance/susceptible classifications.

Free access

R.L. Fery, P.D. Dukes Sr., and J.A. Thies

The southern root-knot nematode (Meloidogyne incognita) is a major pest of bell peppers (Capsicum annuum) in the United States. Since none of the leading bell pepper cultivars grown in the U.S. exhibit adequate levels of resistance, a breeding program was initiated to incorporate the N root-knot nematode resistance gene into commercial bell pepper germplasm. A backcross breeding procedure was used. The donor parent of the N gene was the open-pollinated, pimiento pepper cultivar Mississippi Nemaheart, and the recurrent parents were the open-pollinated bell pepper cultivars Keystone Resistant Giant and Yolo Wonder. A large number of homozygous resistant BC6 populations were evaluated in field tests in 1995, and two lines (PA-440, an isoline of `Keystone Resistant Giant', and PA-453, an isoline of `Yolo Wonder') were selected for further field evaluation and seed multiplication in 1996. Results of replicated field and greenhouse tests conducted in 1996 indicate that root-knot nematode resistance has been incorporated successfully in `Keystone Resistant Giant' and `Yolo Wonder' backgrounds.

Free access

Aref A. Abdul-Baki, Sanaa A. Haroon, and David J. Chitwood

Resistance to root-knot nematodes (Meloidogyne spp.) in tomato (Lycopersicon esculentum Mill.) plants has been reported to break down at soil temperatures >28C. We evaluated in vitro root explants of tomato heterozygous (Mimi), homozygous (MiMi) at the Mi locus, or lacking the Mi-1 gene for resistance to Meloidogyne incognita (Kofoid & White) Chitwood and Meloidogyne arenaria (Neal) Chitwood at 28, 31, 34, and 37C. Genotypes Ace-55 UF and Rutgers, lacking the dominant allele, were susceptible to M. incognita and M. arenaria at all temperatures. Genotypes possessing the dominant allele (heterozygous or homozygous) were equally resistant to both nematode species. The resistance level in these genotypes was maintained fully at 31C, partially maintained at 34C, and lost at 37C. Resistance in the heat-tolerant Mi-heterozygous accession CLN 475-BC1F2-265-4-19 was not different from that of the heat-sensitive genotypes. As temperature increased, the genotypes differed in their sensitivity to resistance conferred by the Mi-1 locus.

Free access

J.A. Thies, J.D. Mueller, and R.L. Fery

A 3-year field study was conducted at Blackville, S.C., to evaluate the potential of using resistant pepper (Capsicum annuum L.) cultivars as a rotation crop for managing the southern root-knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood]. The experiment was a split-plot with main plots arranged in a randomized complete-block design. In 1993, the entire experimental site was infested with M. incognita by inoculating a planting of susceptible PA-136 cayenne pepper with eggs of M. incognita race 3. In 1994, the main plots were planted to either highly resistant `Carolina Cayenne' or its susceptible sibling line PA-136. In 1995, `Carolina Cayenne' and the susceptible bell cultivars California Wonder and Keystone Resistant Giant were grown as subplots in each of the original main plots. `Carolina Cayenne' plants were unaffected by the previous crop. Previous cropping history, however, had a significant impact on the performance of the bell cultivars; the mean galling response was less (P < 0.01) and the yield was 2.8 times greater (P < 0.01) in the main plots previously cropped with `Carolina Cayenne' than in those previously cropped with PA-136. These results suggest that resistant pepper cultivars have considerable merit as a rotation crop for managing M. incognita infestations in soils used for growing high-value vegetables.

Free access

Perry E. Nugent and P.D. Dukes

The southern root-knot nematode, Meloidogyne incognita [(Kofoid & White) Chitwood], causes serious economic losses to melon (Cucumis melo L.) production in the United States. The present study was conducted to determine if separable differences in nematode resistance of Cucumis melo could be found at some inoculum level. Five C. melo lines were compared with Cucumis metuliferus Naud. (C701A), a highly resistant species, for root necrosis, galling, egg mass production, and reproduction when inoculated at 0, 500, 1000, 2000, or 5000 nematode eggs per plant. Using these criteria, melon line C880 inoculated with 1000 eggs per plant was highly susceptible, while PI140471, PI 183311, and the cultivars Chilton, Georgia 47, Gulf Coast, Planters Jumbo, and Southland were less susceptible. In greenhouse tests with an inoculum level of 1000 eggs per plant, low levels of resistance were evident. A thorough screening of the available germplasm against M. incognita may identify higher levels of root-knot nematode resistance for incorporation into improved melon cultivars.

Free access

Richard L. Fery and Judy A. Thies

Scotch Bonnet and Habanero peppers, extremely pungent cultivar classes of Capsicum chinense Jacq., are increasing in popularity in the United States. Because the southern root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood, is a major pest of many C. annuum cultivars, a series of greenhouse and field experiments was conducted to determine if Scotch Bonnet and Habanero peppers from available commercial and private sources also are vulnerable to the pest. In an initial greenhouse test, a collection of 59 C. chinense cultigens was evaluated for reaction to M. incognita race 3. All cultigens obtained from commercial sources were moderately susceptible or susceptible. However, four accessions obtained through Seed Savers Exchange listings exhibited high levels of resistance. Three of these cultigens (PA-353, PA-398, and PA-426) were studied in subsequent greenhouse and field plantings, and each was confirmed to have a level of resistance similar to that available in C. annuum. All three of the resistant cultigens are well-adapted and each is potentially useful in commercial production without further development. None of the Habanero cultigens was resistant to the southern root-knot nematode. The resistant Scotch Bonnet cultigens may serve as sources of resistance for development of root-knot nematode—resistant Habanero peppers.

Free access

G. Craig Yencho, Kenneth V. Pecota, Jonathan R. Schultheis, Zvezdana-Pesic VanEsbroeck, Gerald J. Holmes, Billy E. Little, Allan C. Thornton, and Van-Den Truong

‘Covington’ is an orange-fleshed, smooth-skinned, rose-colored, table-stock sweetpotato [Ipomoea batatas (L.) Lam.] developed by North Carolina State University (NCSU). ‘Covington’, named after the late Henry M. Covington, an esteemed sweetpotato scientist at North Carolina State, was evaluated as NC98-608 in multiple state and regional yield trials during 2001 to 2006. ‘Covington’ produces yields equal to ‘Beauregard’, a dominant sweetpotato variety produced in the United States, but it is typically 5 to 10 days later in maturity. ‘Covington’ typically sizes its storage roots more evenly than ‘Beauregard’ resulting in fewer jumbo class roots and a higher percentage of number one roots. Total yields are similar for the two clones with the dry matter content of ‘Covington’ storage roots typically being 1 to 2 points higher than that of ‘Beauregard’. ‘Covington’ is resistant to fusarium wilt [Fusarium oxysporum Schlect. f.sp. batatas (Wollenw.) Snyd. & Hans.], southern root-knot nematode [Meloidogyne incognita (Kofoid & White 1919) Chitwood 1949 race 3], and moderately resistant to streptomyces soil rot [Streptomyces ipomoeae (Person & W.J. Martin) Wakswan & Henrici]. Symptoms of the russet crack strain of Sweet Potato Feathery Mottle Virus have not been observed in ‘Covington’. The flavor of the baked storage roots of ‘Covington’ has been rated as very good by standardized and informal taste panels and typically scores as well or better in this regard when compared with ‘Beauregard’.

Free access

Judy A. Thies, Richard F. Davis, John D. Mueller, Richard L. Fery, David B. Langston, and Gilbert Miller

Root-knot nematode-resistant `Charleston Belle' bell pepper (Capsicum annuum L. var. annuum) and metam sodium treatment were evaluated for managing the southern root-knot nematode [Meloidogyne incognita (Chitwood) Kofoid and White] in fall-cropped cucumber (Cucumis sativus L.). `Charleston Belle' and its susceptible recurrent parent, `Keystone Resistant Giant', were planted as spring crops at Blackville, S.C., and Tifton, Ga. `Charleston Belle' exhibited high resistance and `Keystone Resistant Giant' was susceptible at both locations. After termination of the bell pepper crop, one-half of the plots were treated with metam sodium delivered through the drip irrigation system. Cucumber yields and numbers of fruit were highest for cucumber grown in plots treated with metam sodium following either `Charleston Belle' or `Keystone Resistant Giant'; however, root gall severity and numbers of M. incognita eggs in the roots were lowest for cucumber grown in plots treated with metam sodium following `Charleston Belle'. Conversely, root gall severity and nematode reproduction were highest for cucumber grown in plots following `Keystone Resistant Giant' without metam sodium treatment. Application of metam sodium through the drip irrigation system following a spring crop of root-knot nematode-resistant bell pepper should reduce severity of root galling and reproduction of M. incognita as well as increase fruit yield of fall-cropped cucumber.