Search Results

You are looking at 41 - 50 of 276 items for :

  • subirrigation x
  • Refine by Access: All x
Clear All
Free access

Nancy K. Todd and David Wm. Reed

Concerns over groundwater contamination due to greenhouse runoff have caused many growers to turn to subirrigation as an alternative watering method. One reported problem is the movement of salts to the top layer of the rootzone due to zero leaching. Many growers are faced with the added challenge of subirrigating plants with poor-quality water than contains a high salt content before the addition of fertilizer. An experiment was conducted to investigate the movement of salts in the root zone and the effects on root development and overall plant growth. Plants were grown using water treated with NaCl + CaCl2 (1:1 equivalent basis) at the following total concentrations: 0, 2, 4, 6, 8, 10, 14, and 18 mM. Treatment time was 10 weeks (marketable stage). At harvest, height was measured and plants were cut off at the soil line and divided into shoots (stems and leaves) and roots for fresh and dry weight. Leaf area was measured. The root zone was divided into three layers—top, middle, and bottom (≈3 cm each). Roots were separated from each soil layer and soil samples collected for measuring EC and pH using 1:2 dilution. Soil samples showed EC in the top layer of the root zone was much higher than the middle and bottom layers. Root weight also decreased substantially in the top layer of the root zone. Height, FW, DW, and leaf area of plants did decrease with increasing salt concentration, indicating that the detrimental effects of poor-quality water on subsequent plant growth, especially in a subirrigation system.

Free access

Youbin Zheng, Thomas Graham, Stefan Richard, and Mike Dixon

To determine whether currently used commercial nutrient solution concentrations can be reduced during the final stage (last 4 to 5 weeks) of production of potted gerbera (Gerbera jamesonii `Shogun') under recirculating subirrigation conditions, plants were grown under one of four nutrient levels (10%, 25%, 50%, and 100% of full strength). Nutrient concentration levels did not affect leaf area, flower number and appearance, and plant total dry weight. There were no significant differences in the greenness (as measured by SPAD meter) of leaves from plants that received the 50% and 100% strength nutrient solutions. However, leaves from plants that received the 10% and 25% strength solution showed significantly less greenness than that of the plants that received 50% and 100% strength nutrient solutions. There were interveinal chlorosis symptoms on the younger leaves of some plants in the 10% and 25% strength nutrient treatments. It is suspected that this interveinal chlorosis was due to iron (Fe) deficiency caused by the increased substrate pH. It is concluded that the nutrient solution concentrations typically used for potted gerbera production in commercial greenhouses at the final stage (4 to 5 weeks) under recirculating subirrigation conditions, can be safely reduced by at least 50% without adversely affecting crop production. Nutrient salts accumulated in the top section of the growth substrate under all treatments levels; however, no phytotoxic effects were observed. No differences in water use (141 mL per plant per day) were observed amid the various nutrient levels. Fertilizer inputs were reduced in the 50%, 25%, and 10% treatments by 54%, 75%, and 90% respectively, relative to the 100% treatment. After 4 weeks under recirculating conditions, the qualities of the nutrient solutions were still within acceptable limits.

Free access

William R. Argo and John A. Biernbaum

Rooted cuttings of `Gutbier V-l 4 Glory poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) were grown in 15-cm pots using two irrigation methods, two water-soluble fertilization schedules, and two preplant root-media fertilization rates. No difference in shoot growth occurred with either top watering with 33% leaching or subirrigation. The top 2.5 cm (top layer) contained nutrient concentrations up to 10 times higher than those measured in the remaining root medium (root zone) of the same pot with both irrigation methods. Constant applications of28 mol N/m3 water-soluble fertilizer (WSF) limited shoot and root growth as measured at 3 and 8 weeks compared to a weekly increase in the concentration of WSF from 0 to 28 mol N/m3 in 7 mol N/m3 increments over a S-week period. The additional incorporation of 0.27 kg·m-3 mineral N to Metro Mix 510 before planting had no effect on fresh- or dry-weight accumulation. When the root-medium surface was covered by an evaporation barrier, 46% less water and 41% less N fertilizer were applied to plants of similar size, and higher root-zone nutrient levels were maintained over the 8 weeks of the experiment. The evaporation barrier had the greatest effect on increasing root-zone nutrient concentrations and reducing the growth of subirrigated plants.

Free access

Matthew W. Kent and David Wm. Reed

Greenhouse cultural methods must change rapidly to minimize runoff and to keep pace with environmental regulation aimed at protecting water resources. Two experiments were designed to investigate the effect of N fertilization rate on New Guinea impatiens (Impatiens ×hawkeri) and peace lily (Spathiphyllum Schott) in an ebb-and-flow subirrigation system. Maximum growth response for impatiens was centered around 8-mM N levels as measured by root and shoot fresh and dry weight, height, leaf number, leaf area, and chlorophyll concentration. For peace lily, growth peaked around 10 mM N. Growing medium was divided into three equal layers: top, middle, and bottom. Root distribution favored the middle and bottom layers, and the relative distribution of roots was consistent as N level increased. Soluble salts remained low in middle and bottom layers at N concentrations below 10 mM, but increased significantly for all soil layers at levels above 10 mM. The top layer contained two to five times higher soluble salt levels than in the middle or bottom layers at all N levels. Increased nitrate concentration mimicked increases in soluble salts, while pH decreased as N concentration increased for both impatiens and peace lily.

Free access

Svoboda V. Pennisi, Marc W. van Iersel, and Stephanie E. Burnett

The growth of three english ivy cultivars in ebb-and-flow subirrigation systems was examined under three photosynthetic photon flux (PPF) treatments (low, medium, or high, corresponding to an average daily PPF of 3.2, 5.4, or 8.5 mol·m–2·d–1, respectively) and four fertilizer concentrations (0, 100, 200, or 300 mg·L–1 N) geared toward production of acclimatized foliage plants. Marketable quality english ivy can be subirrigated with 100 mg·L–1 N. Although 8.5 mol.m–2.d–1 produced the maximum shoot dry weight (SDW), good quality plants also were produced under 5.4 mol·m–2·d–1. `Gold Child', `Gold Dust', and `Gold Heart' english ivy produced with low fertility and low light may be better acclimatized and show superior performance in interior environments. Under light levels lower than 8.5 mol·m–2·d–1, `Gold Heart' had less variegation (12% or 21% for ivy grown under 3.2 or 5.4 mol·m–2·d–1, respectively). `Gold Dust' and `Gold Child' had 65% and 22% variegated leaf area, respectively, when grown under 5.4 mol·m–2·d–1 PPF. Under 5.4 mol·m–2·d–1 PPF, `Gold Dust' retains attractive foliage with overall perception of increased lighter-green coloration.

Free access

G.C. Elliott, R.J. McAvoy, and M. Abbott

Seedlings of Catharanthus roseus “Grape Cooler” was transplanted to cell packs of media: peat-vermiculite-perlite (MM220), peat-hydrophilic rockwool (ABS), and peat-hydrophobic rockwool (REP) and grown in subirrigation trays using 20N-4.4P-17K fertilizer at 50, 150 or 250 ppm N applied at each irrigation. Shoots of four plants in each of two replications were harvested 2, 3, 4 and 5 after transplant. Leaf samples from the third harvest were analyzed for essential elements. Electrical conductivity (EC) was measured in saturated media extracts at each harvest. Significant media by fertilizer interactions were obtained for fresh weight and leaf area at the final harvest. Greatest growth was obtained with 50 ppm N in ABS, but with 150 ppm N in MM 220 and REP. In tehse, growth was similar at 50 and 150 ppm N, but less growth REP than MM220 at 250 ppm. More growth was produced with ABS at 50 ppm N, but less at 150 or 250 ppm N. Leaf tissue N increased 38.5 to 54.5 mg g-1 dry wt. as fertilized increased 50 to 150 ppm, while other nutrients were not significantly affected. Media EC increased with time and fertilizer concentration, with EC in all media fertilized with 250 ppm N exceeding 4.5 dS m-1 at the final harvest.

Free access

Matthew W. Kent and David Wm. Reed

Greenhouse cultural methods must minimize runoff to keep pace with environmental regulation aimed at protecting water resources. Two experiments were designed to investigate the effect of N fertilization rate on New Guinea impatiens (Impatiens ×hawkeri) and peace lily (Spathiphyllum Schott) in an ebb-and-flow subirrigation system. Maximum growth response for impatiens was centered around 8 mm N levels as measured by root and shoot fresh and dry weight, height, leaf number, leaf area, and chlorophyll concentration. For peace lily, growth peaked at about 10 mm N. Growing medium was divided into three equal layers: top, middle, and bottom. Root distribution favored the middle and bottom layers, and the relative distribution of roots was consistent as N level increased. EC remained low in middle and bottom layers at N concentrations below 10 mm, but increased significantly for all layers at levels above 10 mm. The EC for the top layer was 2 to 5 times higher than in the middle or bottom layers at all N levels. Increased nitrate concentration paralleled increased EC, while pH decreased as N concentration increased for impatiens and peace lily.

Free access

Wen-fei L. Uva, Thomas C. Weiler, Robert A. Milligan, and Wen-fei L. Uva

Adoption of technology to achieve environmental stewardship and remain competitive is a high priority for greenhouse businesses. Zero runoff subirrigation (ZRS) technology offers great promise to manage fertilizer inputs while improving production efficiency. This study applied economic engineering methodology to quantify costs and returns associated with adopting ZRS systems and compare profitability of producing crops using alternative ZRS systems for greenhouse operations in the northeastern and north central United States. The production models showed that using ZRS systems to grow greenhouse crops can be profitable if growers select a system best suitable for their crop choices. Among the four ZRS systems studied (ebb-and-flow rolling benches, Dutch movable trays, flood floors and trough benches), the Dutch movable tray system returned the highest profit per square foot week (SFW) greenhouse area for small potted plant production ($0.244/SFW), and the flood floor system returned the highest profit when producing large potted plants ($0.002/SFW) and bedding crop flats ($0.086/SFW). The trough bench system was least profitable had the lowest profit for the two applicable crop categories—small potted plants ($0.183/SFW) and large potted plants (–$0.006/SFW). Sensitivity analysis showed that changes of cost variables generally did not affect the profitability rankings for alternative ZRS systems. Except for labor costs, as the hourly wage increased, the Dutch movable tray system gained advantages for small potted plant and large potted plant production. Among selected costs variables, changes in labor costs and tax rate had the highest impact on the profitability of small potted plant production, and changes in labor costs and initial investment costs had the highest impact on the profitability of large potted plant and bedding crop flat production.

Free access

Wen-fei L. Uva, Thomas C. Weiler, Louis D. Albright, and Douglas A. Haith

Although zero runoff subirrigation (ZRS) technology has great promise to manage fertilizer inputs while improving production efficiency in greenhouse operations, high initial investment costs and inadequate technical background are major impediments for initiating the change. In a world of uncertainty, greenhouse operators face the challenge of making an optimal investment decision to satisfy environmental compliance expectations and meet the companies' financial goals. Using Monte Carlo simulation, cost risk was analyzed to compare the relative risks of investing in alternative ZRS systems for greenhouse crop production. An investment model was defined for greenhouse production with alternative ZRS systems. Each cost variable was allowed to vary based on a probability distribution. Random numbers were generated to determine parameters for the probability distributions for the uncertain variables. The simulation process was repeated 300 times for each production model. Simulation results showed that among the four ZRS systems studied (ebb-and-flow benches, Dutch movable trays, flood floors, and trough benches), the Dutch movable tray system returned the highest average profit for small potted plant production and the flood floor system returned the highest average profit for large potted plant and bedding crop flat production. Risk of the production models were compared by the variability of simulation results. The Dutch movable tray system is the least risky for small potted plant production, and the flood floor system is the least risky for large potted plant and bedding crop flat production. Despite its low initial costs of adoption, the trough bench system was least competitive as a ZRS technology for a greenhouse operation because of the relative low profitability and high risk of production due to volatile profitability.

Free access

Carrie L. Whitcher, Matthew W. Kent, and David Wm. Reed

The objective of this study was to quantify the optimum rates of water-soluble phosphorus (P) under constant nitrogen and potassium on the growth of new guinea impatiens (Impatiens hawkeri Bull.) `Paradise Violet' and vinca Catharanthus roseus `Pacifica Red' in soilless media in a recirculating subirrigation system. The experiment was designed so that only phosphate varied between treatments while all other nutrients remained constant. The ammoniacal N to nitrate N ratio was varied to counter balance increases in phosphate. Sodium was used as a counter ion to phosphate at higher concentrations of phosphate; sodium proved to be toxic at concentrations above 6 mm. In the new guinea impatiens experiment, there was a small increase in K due to the use of dibasic K phosphate to buffer pH. All growth parameters measured (height, leaf number, flower number, and shoot fresh and dry weight) showed significant differences with increasing P rate. Depending on the growth parameter measured, quadratic–linear models revealed an optimum P rate of 0.1 to 0.96 mm for new guinea impatiens `Paradise Violet' and 0.45 to 1.25 mm P for vinca `Pacifica Red'. For dry shoot weight, a common measure of optimum plant growth, the optimum P rate was 0.75 mm P for new guinea impatiens `Paradise Violet' and 0.67 mm P for vinca `Pacifica Red'. For flower number, a common measure of floral quality, the optimal P rate was 0.96 mm P for new guinea impatiens `Paradise Violet' and 1.25 mm P for vinca `Pacifica Red'. Electrical conductivity (EC) of the growing media increased significantly with increasing rate of P. At all rates, EC was significantly greater in the top layer than in the bottom and middle layers. The pH of the growing medium did not vary in relation to P concentration.