Search Results

You are looking at 41 - 50 of 373 items for :

  • adventitious roots x
  • Refine by Access: All x
Clear All
Free access

C.F. Scagel

Many changes in metabolism are known to occur during adventitious root formation, including changes in amino acids, proteins, and carbohydrates. The influence of arbuscular mycorrhizal fungi (AMF) on adventitious rooting of rose was tested by inoculating four cultivars with Glomus intraradices Schenck & Smith. Changes in cutting composition were measured during the initial stages of adventitious root formation. Although there were cultivar-specific differences in response, AMF inoculation generally increased the biomass and number of adventitious roots on cuttings before root colonization was detected. Application of rooting hormone increased this effect. Inoculation with AMF washings also increased the root biomass and number, but only when cuttings were treated with hormone. Changes in cutting composition in response to AMF were detected at 7 to 14 days. Differences in protein concentrations in response to AMF or hormone application were similar, while differences in amino acid and reducing sugar concentrations were not. Concentrations of proteins and amino acids in cuttings at the beginning of the experiment were positively correlated with adventitious rooting, while concentrations of reducing sugars and nonreducing sugars were not correlated with rooting. These results suggests that nitrogen-containing compounds play an important role in adventitious rooting, and that changes in amino acids associated with AMF inoculation were potentially different than those that occurred when cuttings were treated with rooting hormone alone. Carbohydrate concentrations in cuttings were not strongly related to initiation of adventitious roots, but reducing sugar may play a role in regulating part of the response of cuttings to AMF. The response of rose cuttings prior to colonization by G. intraradices suggests that AMF-plant signaling events occurred prior to rooting.

Free access

Peggy Ozias-Akins and Srini Perera

One cm segments from adventitious roots of sweet potato (Ipomoea batatas (L.) Lam.) will regenerate shoots when cultured on Murashige and Skoog salts and vitamins plus either sucrose (1-3%) or fructose (1-6%). The best source for adventitious roots is sweet potato shoot cultures maintained in Magenta vessels. A low concentration of cytokinin (0.02 mg/liter) promotes shoot formation. Higher levels of cytokinin (0.1-0.5 mg/liter) encourage callus growth. The maximum average number of shoots formed per root segment attained thus far is 0.5. Attempts are being made to increase the frequency of shoot formation. Regeneration of shoots from roots also may be a useful method for obtaining plants from protoplasts of sweet potato. Protoplasts can be isolated from mesophyll tissue and petioles of in vitro grown plants. Plating efficiency of up to 12% routinely can be obtained. Shoot formation directly from callus is sporadic; root formation is more frequent.

Free access

R.C. Apter, F.T. Davies Jr., and E.L. McWilliams

In vitro tissue-cultured (TC) and macropropagated (MACRO) 18-day old adventitious roots of Asian jasmine [Trachelospermum asiaticum (Siebold & Zucc.) Nakai] were compared for their ability to absorb and translocate radiolabelled P from a nutrient solution. Samples were taken at 1, 2, 4, 8, 12, and 24 hours after the initial dosage of the nutrient solution with 7.4 × 10-2 MBq KH 32 2PO4/liter. TC roots were capable of absorbing P, but at significantly lower levels than MACRO roots. Greater P absorption occurred in MACRO roots within the first hour and continued for the duration of the experiment. However, there was no significant difference in the rate of P translocation from roots to shoots between treatments. Root systems formed in vitro survived acclimation and had developed into well-branched root systems after 13 weeks. Reduced P absorption by TC roots did not limit either P translocation or survivability during and after acclimation.

Free access

Dennis P. Stimart and John C. Mather

Cotyledons from developing 6- to 8-week-old embryos of Liatris spicata (L.) Willd. (blazing star) were cultured on Murashige and Skoog medium containing 0, 0.4, 4.4, or 44.4 μm BA or 0, 0.2, 2.2, or 22.2 μm TDZ to induce adventitious shoot formation. The highest percentage of cotyledons forming the most shoots was on medium containing 2.2 μm TDZ. Cotyledon-derived callus cultured on medium containing 4.4 μm BA formed ≈16 times more adventitious shoots than on 2.2 μm TDZ. Adventitious shoots derived from cotyledons or callus produced roots when placed on MS medium containing 5.0 μm IBA. Regenerated plants that flowered in the field appeared homogeneous. Chemical names used: N6-benzyladenine (BA), thidiazuron (TDZ), indole-3-butyric acid (IBA).

Free access

Sven E. Svenson, Fred T. Davies Jr., and Sharon A. Duray

Gas exchange, water relations, and dry weight partitioning of shoot tip cuttings of `Eckespoint Lilo Red' (`Lilo') and `Gutbier V-10 Amy Red' (`Amy') poinsettia (Euphorbia pulcherrima Wind. ex Klotzsch) were studied during the initiation and development of adventitious roots. Net photosynthesis (A) and stomatal conductance (g) of cuttings were initially low and remained low until root primordia formation. Foliar relative water content (RWC) and osmotic potential (ψπ) increased upon formation of root primordia. Following formation of root primordia (2 days before visible root emergence) and concurrent with increasing RWC and ψπ, g increased. As roots initially emerged, A and g increased rapidly and continued to increase with further root primordia development and subsequent emergence of adventitious roots. Cutting stem and leaf dry mass and leaf area increased during the first few days after sticking cuttings. During primordium development and initial root emergence, the highest percent increase in dry weight was accounted for by basal stem sections. AU cuttings of both cultivars rooted and had similar root numbers after 23 days, but `Lilo' cuttings had 15% better rooting and 44% more roots than `Amy' after 15 days. This research supports the hypothesis that formation and elongation of root primordia coincides with increased gas exchange in poinsettia cuttings, and that gas exchange can be used as a nondestructive indicator of adventitious root development.

Free access

Takuya Tetsumura and Hisajiro Yukinaga

When cultured in vitro, roots of four Japanese persimmon (Diospyros kaki L.) cultivars formed adventitious shoots on MS medium with 10 μm zeatin and 0.01 μm indole-3-acetic acid, although their organogenetic capacities varied. Histological study revealed that the origin of the adventitious shoots was the pericycle. The regenerated shoots grew well on the shoot proliferation medium (MS with 5 μm zeatin). Final rooting percentages of shoots regenerated from roots of three of the four cultivars were greater than those of shoots that originated from shoot tips and that had been subcultured >50 times. Shoots regenerated from `Jiro' roots rooted 10 days earlier, had more roots than those from shoot tips, and maintained higher rooting ability over ten subcultures. Rooted `Hiratanenashi' shoots regenerated from roots survived better after acclimatization than those from shoot tips. No obvious variants were observed either in vitro or in the field. The trees regenerated from roots flowered within 4 years. These findings suggest that partial rather than true rejuvenation was responsible for both the early flowering and the juvenile characteristics, i.e., the enhanced rooting ability, observed in the regenerated plants. Chemical name used: 6-(4-hydroxy-3-methylbut-2-enylamino) purine (zeatin).

Free access

Michael A. Arnold and Eric Young

After receiving 0, 600, 1200, or 1800 hr. of chilling at 5C, one-year-old Malus domestica Borkh. seedlings were given 10 sec. root dips either 10,000 ppm K-IBA solution or water control. Following chilling and IBA treatments, 20 seedlings of each combination were placed in forcing conditions of 20 ± 2C root temperatures and either 20 or 5 ± 1C shoot temperatures. Five seedlings of each treatment were harvested after 0, 7, 14, and 21 days of forcing. Five C prohibited budbreak and bark slipage for up to 21 days. Under 20C, budbreak, shoot elongation and root growth all occurred earlier, faster, and reached a higher level with increased chilling. Twenty C root and 5C shoot temperatures during forcing resulted in large increases in the growth of adventitious shoots on lateral roots, but had little effect on the formation of adventitious shoots on the tap root. K-IBA prohibited development of adventitious shoots on roots, reduced shoot elongation more so than budbreak, and increased root regeneration across chilling hours. K-IBA inhibition of adventitious shoots did not alter the overall pattern of root regeneration enhancement by chilling.

Free access

Michael A. Arnold and Eric Young

After receiving 0, 600, 1200, or 1800 hr. of chilling at 5C, one-year-old Malus domestica Borkh. seedlings were given 10 sec. root dips either 10,000 ppm K-IBA solution or water control. Following chilling and IBA treatments, 20 seedlings of each combination were placed in forcing conditions of 20 ± 2C root temperatures and either 20 or 5 ± 1C shoot temperatures. Five seedlings of each treatment were harvested after 0, 7, 14, and 21 days of forcing. Five C prohibited budbreak and bark slipage for up to 21 days. Under 20C, budbreak, shoot elongation and root growth all occurred earlier, faster, and reached a higher level with increased chilling. Twenty C root and 5C shoot temperatures during forcing resulted in large increases in the growth of adventitious shoots on lateral roots, but had little effect on the formation of adventitious shoots on the tap root. K-IBA prohibited development of adventitious shoots on roots, reduced shoot elongation more so than budbreak, and increased root regeneration across chilling hours. K-IBA inhibition of adventitious shoots did not alter the overall pattern of root regeneration enhancement by chilling.

Free access

John L. Griffis Jr.

Surinam cherry (Eugenia uniflora L.) has value as a minor tropical fruit crop and as an ornamental plant in tropical and subtropical regions. In the United States, Surinam cherry is propagated by seed, as stem cuttings do not root. Elite selections are propagated by grafting, but grafts have not had high rates of success. Micropropagation of Surinam cherry has also been mostly unsuccessful. In this trial, 100 seeds from a self-cross of the cultivar Zill Dark were surface-disinfested and placed in vitro in 150 × 25-mm tubes on a medium of deionized water solidified with 8 g/L of agar. Seed cultures were placed on unlighted shelves. After 3 weeks without lights, seed cultures were transferred to lighted shelves where they readily germinated (100%) over the next 7 to 14 days. Seedlings were strongly tap-rooted and the roots quickly reached the bottoms of the tubes. After the 2 weeks under lights, 2 mL of autoclaved, half-strength liquid McCown's Woody Plant Medium (WPM) were added to each tube, creating a two-phase culture environment. Every 4 weeks, another 2 mL of half-strength WPM liquid medium were added to the cultures. Most seedlings elongated and produced three or more stems nodes with leaves after 10 weeks under lights. After this 10-week growth period, several of the seedlings had also produced adventitious roots at the first, second, and third stem nodes. After an additional 4 weeks in culture, 50% of the seedlings (50) had produced adventitious roots at one or more nodes. Additionally, tip cuttings taken from some of the seedlings that did not initially produce adventitious roots, produced roots at nodes when the stems were inserted directly in WPM medium supplemented with 20 g/L sucrose and various auxins.

Free access

Rolston St. Hilaire and Carlos A. Fierro Berwart

Mussaendas (Mussaenda spp.) are ornamental shrubs, and some cultivars are difficult to root. This study was conducted to explore how adventitious roots initiate and develop in the cultivar Rosea, and to determine if anatomical events are associated with difficulty in rooting stem cuttings. Stem cuttings were treated with 5, 10, 15 mm 1H-indole-3-butyric acid (IBA), or distilled water, and sampled every 2 days over 26 days to observe adventitious root formation and development. For analysis by light microscopy, the basal 1 cm of cuttings was embedded in wax and stained with safranin-fast green. Adventitious roots initiated from phloem parenchyma cells and from basal callus in nontreated cuttings. Cuttings treated with 15 mm IBA had a mean of 18 root primordia per basal 1 cm of cutting after 10 days. Root primordia were not observed in non-treated cuttings at 10 days. Root primordia that developed in non-treated cuttings lacked clear vascular connections. These results suggest that non-treated cuttings are difficult to root because few primordia are produced.