Search Results

You are looking at 41 - 50 of 205 items for :

  • "soilless culture" x
  • Refine by Access: All x
Clear All
Full access

Xing Yuxian, Wang Xiufeng, and Athanasios P. Papadopoulos

A new multilayer soilless culture system for greenhouse tomato production is described. Experiments over two spring seasons and one winter season demonstrated faster plant growth rate, higher dry matter productivity, higher fruit yield, and better fruit quality with the multilayer soilless culture system compared to the traditional soil-based culture system. The multilayer soilless culture system is suggested as a replacement of the soil-based production system to achieve significant yield improvement in greenhouse tomato production.

Free access

Youssef Rouphael, Giampaolo Raimondi, Rosanna Caputo, and Stefania De Pascale

(average = 52.7 cm), leaf number (average = 9.9 leaves/plant), total leaf area (average = 2889.1 cm 2 /plant), and total dry weight (average = 47.0 g/plant) of potted Hippeastrum plants grown in semiclosed soilless culture ( Table 1 ). However, the number

Full access

Elio Jovicich, John J. VanSickle, Daniel J. Cantliffe, and Peter J. Stoffella

The increase in U.S. demand for colored bell peppers (Capsicum annuum) has been satisfied with increased supplies from imports and increased domestic production. Greenhouse-grown peppers of red, orange, and yellow colors were imported during the period 1993–2002 at wholesale fruit market prices that were three to five times greater than field-grown fruits. With high market prices and a suitable environment for growing colored peppers under inexpensive greenhouse structures [<$40/m2 ($3.7/ft2)], up to 14 ha (34.6 acres) of greenhouses produced bell peppers in Florida in the year 2002. To estimate the profitability of a bell pepper greenhouse enterprise, a budget analysis was used to calculate the returns to capital and management. Production costs of greenhouse-grown peppers were estimated assuming the use of current technology applied in commercial greenhouse crops in Florida and in experimental crops at the University of Florida. Production assumptions included a crop of nonpruned plants grown in soilless media in a highroof polyethylene-covered greenhouse [0.78 ha (1.927 acres)] located in north-central Florida. For a fruit yield of 13 kg·m–2 (2.7 lb/ft2), the total cost of production was $41.09/m2 ($3.82/ft2), the estimated return was $17.89/m2 ($1.66/ft2), and the return over investment was 17.1%. A sensitivity analysis indicated that fruit yields should be greater than 7.8 kg·m–2 (1.60 lb/ft2) in order to generate positive returns based on a season average wholesale fruit price of $5.29/kg ($2.40/lb). For this price, a range of possible fruit yields [5–17 kg·m–2 (1.0–3.5 lb/ft2)] led to returns ranging from –$9.52 to 30.84/m2 (–$0.88 to 2.87/ft2), respectively. The estimates indicate that production of greenhouse-grown peppers could represent a viable vegetable production alternative for Florida growers.

Free access

Md. Jahedur Rahman, Md. Quamruzzaman, Jasim Uddain, Md. Dulal Sarkar, Md. Zahidul Islam, Most. Zannat Zakia, and Sreeramanan Subramaniam

nitrogen availability in this tissue of crops, such as pepper. Thus, improving the quality and yield contributing characteristics in bitter gourd are important factors in soilless culture technique. These may be improved by managing external proper nutrient

Free access

Paraskevi A. Londra, Maria Psychoyou, and John D. Valiantzas

Recently, urea–formaldehyde resin foam (UFRF) has been introduced as a synthetic organic soil amendment and is used as a substrate in the propagation and growth of plants in hydroponic systems, soilless cultures, and substrates used in production of

Full access

Lu Zhang and Xiangyang Sun

Peat is commonly used as a component in soilless culture because of its favorable agronomic characteristics ( Boldrin et al., 2010 ; Fernandez-Hernandez et al., 2014 ; Zhang et al., 2013a ). However, the decreasing availability and increasing

Free access

W. Voogt

In the Netherlands, many crops in protected cultivation changed from soil to soilless culture in recent years. The reasons for this development were problems with soil sterilization and better growth control with soilless culture, which led to considerable yield increases. However, the growing systems used, with free leachate drainage, contribute highly to pollution of the ground and surface water with minerals (N and P). To reduce this emission, closed growing systems were developed, i.e., systems with recirculating nutrient solutions. Inherent to these systems, however, were problems such as the rapid spread of pathogens in the root environment. Methods were developed for disinfestation of the nutrient solution. Salt accumulation was also a concern, the concentrations of ions in the water used for closed systems must be lower than the uptake capacity of the plants. To avoid depletion and accumulation of certain nutrients. the addition of nutrients should be adapted to the demand during the cropping period. For this purpose, nutrient solutions and guidelines for adjustments during the cropping period were developed for several crops.

Free access

Guanghua Zheng

There was a remarkable growth in China's greenhouse horticulture during the past decade. In 1989, the greenhouse area in China was 22,000 ha, but this figure reached up to 350,000 ha in 1999, about 16 times as large as that in 1989. Currently, the main greenhouse design used for commercial production is the energy conservation type—solar greenhouse—and many growers use eco-organic soilless culture for production. The substrates used for vegetable production are perlite, vermiculite, peat, coal cinder, sand, coir, sunflower stem, and sugar cane stem. Dry solid organic manure is mixed into the substrates before conducting cultivation, and then only water is for irrigation. Growing vegetables in this way improved quality, increased market value, and decreased environmental pollution.

Free access

Su-Jeong Kim, Chun-Woo Nam, Dong-Lim Yoo, Jong-Taek Suh, Myoung-Rae Cho, and Ki-Sun Kim

This study was conducted to overcome the problems occurring in soil cultured Sandersonia, such as secondary tuber formation, tuber russeting, browning and surface cracking. For the tuber production, soilless culture medium compositions (peatmoss, perlite, cocopeat) and harvesting times [4, 6, 8, 10, and 12 weeks after flowering time (WAF)] were compared. The mother tubers were planted and grown in a plastic box (40 × 60 × 23 cm) under a PE film house with shading in summer season. The tuber number and weight were higher in peatmoss-based media of peatmoss, 1 peatmoss: 1 perlite, and 2 peatmoss: 1 perlite (by volume) than in the other media. Particularly, the plant height and the numbers of leaf and flower were also higher. The contents of total nitrogen and phosphorus in leaves were lower when the tubers were grown in perlite. Leaf area index per plant reached the maximum at 8 WAF and decreased thereafter. The optimal harvesting time for tuber production was 8-10 WAF.

Free access

J.C. Rodriguez, D.J. Cantliffe, N.L. Shaw, and Z. Karchi

In the spring of 2001 and 2002, different combinations of media (coarse perlite, medium perlite, and pine bark) and containers (polyethylene bags and plastic pots) were used for hydroponic production of `Galia' muskmelons (Cucumis melo L.) to determine their effect on fruit yield and quality, and their influence on costs of production. Marketable yields obtained for `Gal-152' in the spring 2001 and 2002 were 25.5 kg·m–2 and 39.0 kg·m–2 respectively. When data were combined for 2001 and 2002, fruit yield and fruit quality were unaffected by any combination of media and container. Average soluble solids content was generally greater than 10° Brix. It was determined that the use of pine bark media and plastic pots instead of perlite and bags would save $18,200 per year (two crops)—a feasible option for reducing costs of producing `Galia' muskmelons in greenhouses using soilless culture without loss of yield and fruit quality.