Search Results

You are looking at 41 - 50 of 915 items for :

  • "photosynthetic photon flux" x
  • Refine by Access: All x
Clear All
Open access

David L. Bubenheim, Bruce Bugbee, and Frank B. Salisbury

Abstract

Radiation in controlled environments was characterized using fluorescent and various high-intensity-discharge (HID) lamps, including metal halide, low-pressure sodium, and high-pressure sodium as the radiation source. The effects of water, glass, or Plexiglas filters on radiation were determined. Photosynthetic photon flux (PPF, 400 to 700 nm), spectra (400 to 1000 nm), shortwave radiation (285 to 2800 nm), and total radiation (300 to 100,000 nm) were measured, and photosynthetically active radiation (PAR, 400 to 700 nm) and longwave radiation (2800 to 100,000 nm) were calculated. Measurement of PPF alone was not an adequate characterization of the radiation environment. Total radiant flux varied among lamp types at equal PPF. HID lamps provided a lower percentage of longwave radiation than fluorescent lamps, but, when HID lamps provided PPF levels greater than that possible with fluorescent lamps, the amount of longwave radiation was high. Water was the most effective longwave radiation filter. Glass and Plexiglas similarly filtered longwave more than shortwave radiation, but transmission of nonphotosynthetic shortwave radiation was less with Plexiglas than glass. The filter materials tested would not be expected to influence photomorphogenesis because radiation in the action spectrum of phytochrome was not altered, but this may not be the only pigment involved.

Free access

Jocelyn L. Catley and Ian R. Brooking

Flowering responses of Heliconia psittacorum L.f. × H. spathocircinata Aristeguieta `Golden Torch' to temperature and photosynthetic photon flux (PPF) were determined in controlled-environment conditions using a 2 × 2 factorial combination of temperature (32C day/20C night and 24C day/20C night) and PPF (475 and 710 μmol·m–2·s–1). Temperature had no significant effect on new shoot production, with an average of 9.3 shoots per plant being produced over the 248 days of treatment. More shoots, however, were produced at the higher PPF level (10.1 compared with 8.3 shoots). The proportion of shoots that initiated flowers (85%) was similar in all treatments. The duration from shoot until inflorescence emergence was significantly less at 32C day/20C night than at 24C day/20C night (140 and 146 days, respectively) and was unaffected by PPF. This duration also was significantly affected by the interacting effects of order of shoot appearance and the number of leaves subtending the inflorescence. The second shoots to emerge had the shortest duration from shoot emergence to inflorescence emergence. The number of leaves subtending the inflorescence increased at the higher temperature and decreased as shoot order increased but was unaffected by PPF. Temperature and PPF levels influenced total leaf area at flowering, with highest areas being achieved in the high temperature–low PPF combination. Acceptable flower quality with at least two, opened, well-formed, well-colored bracts was obtained in all treatments, although flower stems were taller and thicker at 32C day/20C night and these dimensions increased further with increasing order of shoot appearance. Stem diameters tended to be thinner at the lower PPF level. Overall, temperature was more dominant than light in influencing production and quality of flowers, but developmental factors associated with the order of shoot appearance also played a significant role. Flower production of `Golden Torch' should be feasible in temperature-controlled glasshouses in temperate regions where mean air temperatures can be maintained at ≈20C.

Free access

Krishna S. Nemali and Marc W. van Iersel

Environmental conditions and incorporation of nutrients into the growing medium can affect the fertilizer needs of bedding plants. To evaluate the effects of photosynthetic photon flux (PPF) and starter fertilizer on the fertilizer requirements of subirrigated plants, we grew wax begonias (Begonia semperflorens-cultorum Hort.) under three PPF levels (averaging 4.4, 6.2, and 9.9 mol·m-2·d-1) and four fertilizer concentrations [electrical conductivity (EC) of 0.15, 0.33, 0.86, and 1.4 dS·m-1] in a normal (with starter fertilizer, EC = 2.1 dS·m-1) and heavily leached (with little starter fertilizer, EC = 0.9 dS·m-1) growing medium. Except for shoot dry mass, we did not find any significant interactions between PPF and fertilizer concentration on any of the growth parameters. There was an interactive effect of fertilizer concentration and starter fertilizer on all growth parameters (shoot dry mass, leaf area, plant height, and number of flowers). When the growing medium contained a starter fertilizer, fertilizer concentration had little effect on growth. When the growing medium was leached before transplanting, growth was best with a fertilizer EC of 0.86 or 1.4 dS·m-1. Water-use efficiency (WUE) was calculated from 24-hour carbon exchange and evapotranspiration measurements, and used to estimate the required [N] in the fertilizer solution to achieve a target tissue N concentration of 45 mg·g-1. Increasing PPF increased WUE and the required [N] (from 157 to 203 mg·L-1 at PPF levels of 4.4 and 9.9 mol·m-2·d-1, respectively). The PPF effect on the required [N] appeared to be too small to be of practical significance, since dry mass data did not confirm that plants grown at high light needed higher fertilizer concentrations. Thus, fertilizer concentrations need not be adjusted based on PPF.

Free access

M.J. McMahon, J.W. Kelly, D.R. Decoteau, R.E. Young, and R.K. Pollock

Abbreviations: B, blue; FR, far red; P, phytochrome; PPF, photosynthetic photon flux; R, red; UV, ultraviolet. South Carolina Experiment Station paper no. 3170. Support for this project was provided by South Carolina Agricultural Experiment Station

Free access

A.M. Armitage, N.G. Seager, I.J. Warrington, D.H. Greer, and J. Reyngoud

Incremental increases in temperature from 14 to 22 to 30C resulted in linear increases in stem length and node number and decreases in stem diameter and stem strength of Oxypetalum caeruleum (D. Don.) Decne. Higher temperatures also resulted in additional flower abortion, reduced time to flowering, and fewer flowering stems per inflorescence. Reduction in the photosynthetic photon flux (PPF) from 695 to 315 μmol·s-1·m-2 had similar effects as increasing the temperature on vegetative characteristics, but had little effect on reproductive ones. The rate of stem elongation was greatest at low PPF for all temperatures and at high temperature for all PPF treatments. Net photosynthesis rose between 14 and 22C and declined at 30C for all PPF treatments. Long photoperiods (12 or 14 hours) resulted in longer internodes, longer stems, and more flowers per cyme than short photoperiods (8 or 10 hours), but photoperiod had little effect on flowering time. Treatments to reduce latex coagulant and silver thiosulfate treatments had no significant effect on vase life.

Free access

Anthony W. Whiley, Christopher Searle, Bruce Schaffer, and B. Nigel Wolstenholme

Leaf gas exchange of avocado (Persea americana Mill.) and mango (Mangifera indica L.) trees in containers and in an orchard (field-grown trees) was measured over a range of photosynthetic photon fluxes (PPF) and ambient CO2 concentrations (Ca). Net CO2 assimilation (A) and intercellular partial pressure of CO2 (Ci) were determined for all trees in early autumn (noncold-stressed leaves) when minimum daily temperatures were ≥14 °C, and for field-grown trees in winter (cold-stressed leaves) when minimum daily temperatures were ≤10 °C. Cold-stressed trees of both species had lower maximum CO2 assimilation rates (Amax), light saturation points (QA), CO2 saturation points (CaSAT) and quantum yields than leaves of noncold-stressed, field-grown trees. The ratio of variable to maximum fluorescence (Fv/Fm) was ≈50% lower for leaves of cold-stressed, field-grown trees than for leaves of nonstressed, field-grown trees, indicating chill-induced photoinhibition of leaves had occurred in winter. The data indicate that chill-induced photoinhibition of A and/or sink limitations caused by root restriction in container-grown trees can limit carbon assimilation in avocado and mango trees.

Free access

Chieri Kubota, Natsuko Kakizaki, Toyoki Kozai, Koichi Kasahara, and Jun Nemoto

Nodal explants of tomato (Lycopersicon esculentum Mill.) were cultured in vitro to evaluate the effects of sugar concentration, photosynthetic photon flux (PPF), CO2 concentration, ventilation rate of the vessel, and leaf removal on growth and photosynthesis. After 20 days of culture, the dry weights of plantlets derived from explants with leaves and cultured photoautotrophically (without sugar in the medium) under high PPF, high CO2 concentration, and high ventilation rate were more than twice as great as those of plantlets derived conventionally from explants without leaves and cultured photomixotrophically (with sugar in the medium) under low PPF, low CO2 concentration, and low ventilation rate (107 and 45 mg per plantlet, respectively). Under photomixotrophic micropropagation conditions, the dry weights of plantlets from explants with leaves increased more than did those of plantlets from explants without leaves. High PPF, high CO2 concentration, and high ventilation rate increased net photosynthetic rate and promoted growth of the plantlets under photomixotrophic micropropagation conditions. Photomixotrophic conditions produced the greatest dry weight and the longest shoots, but photoautotrophic conditions produced the highest net photosynthetic rate. The number of leaves did not differ significantly between photoautotrophically and photomixotrophically cultured plantlets. Thus, photoautotrophic micropropagation is applicable to the production of high quality tomato transplants.

Open access

D. Stuart Tustin, Peter M. Hirst, and Ian J. Warrington

Abstract

Fruiting laterals were tagged within the inner and outer canopy zones of the basal, mid, and upper tiers of dormant, mature central-leader ‘Granny Smith’ apple (Malus domestica Borkh.) trees and were classified into pendant (>120°), horizontal (30°-120°), and vertical (0°-30°) types. Transmission of photosynthetic photon flux (PPF) to spur sites on tagged laterals was measured in mid-season and fruits from these sites were harvested at commercial maturity for assessment of fresh weight, soluble solids concentration (SSC), starch pattern index, and background color. Pendant laterals produced fewer, smaller, and greener fruit per flowering spur than horizontal or vertical laterals. Fruit fresh weight and soluble solids concentration increased with increasing height in the canopy and were higher in the outer compared with the inner horizontal canopy position. Background color followed a trend opposite to that of fresh weight and soluble solids concentration, with fruit from the lower inner canopy regions being greenest. Both fresh weight and SSC showed highly positive correlations with the percentage transmission of PPF. Fruit set showed a positive correlation with PPF, although the relationship was weaker than that for fresh weight or SSC. PPF penetration was lower to pendant laterals than to horizontal and vertical laterals and declined from upper to lower and from outer to inner canopy positions. Pendant fruiting laterals received < 15% of PPF, irrespective of location within the canopy.

Open access

Judith A. Abbott, Donald T. Krizek, Peter Semeniuk, Harold E. Moline, and Roman M. Mirecki

Abstract

Intact plants of a green-leafed strain of Coleus blumei Benth. (PI 354190) were exposed to 5°C for 48 or 72 hr after pretreatment for 48 hr at two levels of photosynthetic photon flux (PPF) (8 or 320 μmol·s−1·m‒2) at two temperatures (13° or 20°). Plants were sprayed with two abscisic acid (ABA) levels (0 or 200 g·m‒3) either 0 or 48 hr before chilling. Postchilling condition of the plants was assessed by comparing the time courses of refreshed (cyclically excited and measured) delayed light emission (RDLE) and fluorescence (FLU) from dark-equilibrated leaves. Greater suppression of RDLE and FLU indicates greater injury. Plants pretreated at 8 μmol·s−1·m‒2 PPF showed less suppression of RDLE and FLU, contained more chlorophyll, and showed less injury than did plants pretreated at 320 μmol·s−1·m‒2 PPF. Increasing the duration of chilling from 48 to 72 hr reduced the maximum RDLE and FLU slightly. Pretreatment temperatures and ABA concentration had negligible effects on RDLE and FLU levels. The maximum RDLE, the RDLE level at 7.5 sec, the maximum FLU, the FLU at 1.5 sec, and variable FLU were the measurement variables most responsive to individual and combined treatment effects. Maximum RDLE from upper leaf surfaces was the measurement most responsive to the combined effects of all treatments. Chemical name used: [S-(Z,E)]-5-(1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl)-3-methyl-2,4-pentadienoic acid [abscisic acid (ABA)].

Free access

Lailiang Cheng, Leslie H. Fuchigami, and Patrick J. Breen

Bench-grafted `Fuji' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] trees on Malling 26 (M.26) rootstocks were fertigated for 6 weeks with N concentrations ranging from 0 to 20 mm. These treatments produced levels of leaf N ranging from 0.9 to 4.3 g·m-2. Over this range, leaf absorptance increased curvilinearly from 74.8% to 92.5%. The light saturation point for CO2 assimilation expressed on the basis of absorbed light increased linearly at first with increasing leaf N, then reached a plateau at a leaf N content of ≈3 g·m-2. Under high light conditions (photosynthetic photon flux of 1500 μmol·m-2·s-1), the amount of absorbed light in excess of that required to saturate CO2 assimilation decreased with increasing leaf N. Chlorophyll fluorescence measurements revealed that the maximum photosystem II (PSII) efficiency of dark-adapted leaves was relatively constant over the leaf N range, except for a slight decrease at the lower end. As leaf N increased, nonphotochemical quenching declined under high light, and there was an increase in the efficiency with which the absorbed photons were delivered to open PSII centers. The photochemical quenching coefficient remained high except for a decrease at the lower end of the leaf N range. Actual PSII efficiency increased curvilinearly with increasing leaf N, and was highly correlated with light-saturated CO2 assimilation. The fraction of absorbed light potentially going into singlet oxygen formation was estimated to be ≈10%, regardless of leaf N status. It was concluded that there was more excess absorbed light in low N leaves than in high N leaves under high light conditions. Nonphotochemical quenching was enhanced with decreasing leaf N to reduce both the PSII efficiency and the probability of damage from photooxidation by excess absorbed light.