Search Results

You are looking at 41 - 50 of 188 items for :

  • "crop residues" x
  • Refine by Access: All x
Clear All
Free access

Sidat Yaffa, Bharat P. Singh, Upendra M. Sainju, and K.C. Reddy

Sustainable practices are needed in vegetable production to maintain yield and to reduce the potential for soil erosion and N leaching. We examined the effects of tillage [no-till (NT), chisel plowing (CP), and moldboard plowing (MP)], cover cropping [hairy vetch (Vicia villosa Roth) vs. winter weeds], N fertilization (0, 90, and 180 kg·ha-1 N), and date of sampling on tomato (Lycopersicon esculentum Mill.) yield, N uptake, and soil inorganic N in a Norfolk sandy loam in Fort Valley, Ga. for 2 years. Yield was greater with CP and MP than with NT in 1996 and was greater with 90 and 180 than with 0 kg·ha-1 N in 1996 and 1997. Similarly, aboveground tomato biomass (dry weight of stems + leaves + fruits) and N uptake were greater with CP and MP than with NT from 40 to 118 days after transplanting (DAT) in 1996; greater with hairy vetch than with winter weeds at 82 DAT in 1997; and greater with 90 or 180 than with 0 kg·ha-1 N at 97 DAT in 1996 and at 82 DAT in 1997. Soil inorganic N was greater with NT or CP than with MP at 0- to 10-cm depth at 0 and 30 DAT in 1996; greater with hairy vetch than with winter weeds at 0- to 10-cm and at 10- to 30-cm at 0 DAT in 1996 and 1997, respectively; and greater with 90 or 180 than with 0 kg·ha-1 N from 30 to 116 DAT in 1996 and 1997. Levels of soil inorganic N and tomato N uptake indicated that N release from cover crop residues was synchronized with N need by tomato, and that N fertilization should be done within 8 weeks of transplanting. Similar tomato yield, biomass, and N uptake with CP vs. MP and with 90 vs. 180 kg·ha-1 N suggests that minimum tillage, such as CP, and 90 kg·ha-1 N can better sustain tomato yield and reduce potentials for soil erosion and N leaching than can conventional tillage, such as MP, and 180 kg·ha-1 N, respectively. Because of increased vegetative cover in the winter, followed by increased mulch and soil N in the summer, hairy vetch can reduce the potential for soil erosion and the amount of N fertilization required for tomato better than can winter weeds.

Free access

Carlene A. Chase, Rosalie L. Koenig, Jeffery E. Pack, and Clinton C. Warren

Weed management is a major constraint of organic vegetable production and perennial weeds such as purple nutsedge (Cyperus rotundus) are particularly difficult to control. A study was initiated in 2005 to determine how summer fallow techniques impact purple nutsedge population density, tuber number and tuber viability; and to evaluate the impact of the treatments on the yields of two fall crops differing in canopy size and rate of development. Clean fallow treatments accomplished with weekly tillage or weekly flaming were conducted for 12 weeks. Two sets of summer cover crop treatments of sunn hemp (Crotalaria juncea) were established by broadcasting 40 lb of seed per acre and were undercut at 13 weeks after seeding. Cover crop residue was either incorporated before transplanting or retained on the surface as mulch for the fall crops of lettuce and broccoli. Soil solarization was initiated on 2 July and the transparent solarization film was maintained in place until mid-October. A weedy fallow treatment was included as a control, which was tilled before establishing the fall crops. Before the initiation of the summer fallow treatments, no difference in viable tubers or nutsedge shoot density was observed. After fallow, flaming had the highest number of viable tubers, with all other treatments similar to the weedy control. Nutsedge shoot density was suppressed by all fallow treatments to lower levels than with the weedy control, but solarization was the least effective. Leaf-cutting insects eliminated the crops in the sunn hemp mulch treatment within days of being transplanted. Lettuce stands with all other treatments were similar and greater than with the weedy control. Highest broccoli stands were obtained with flaming, solarization, and tillage; but broccoli stand with incorporated sunn hemp was similar to the weedy control. Highest lettuce yields occurred with incorporated sunn hemp, solarization, and weekly tillage. However, lettuce yields with flaming and the weedy control did not differ statistically. Broccoli yields were greatest with flaming, solarization, and tillage. Broccoli development was delayed with the weedy control and incorporated sunn hemp treatments and no significant yield was obtained.

Free access

Erin R. Haramoto and Daniel C. Brainard

offer more opportunities to integrate cover crops into rotations. Cover crop residues may help ameliorate some of the negative effects of disturbance IR by adding organic matter; BR, the residue remains as surface mulch, which may help retain soil

Free access

Richard Smith, Michael Cahn, Timothy Hartz, Patricia Love, and Barry Farrara

al., 1999 ; Thompson et al., 2002a ), and consequently may be able to scavenge residual SMN from a substantial depth. Conversely, a large amount of N is contained in crop residue after harvest, and rapid mineralization from this N-rich residue has

Full access

Husrev Mennan and Mathieu Ngouajio

growth either through direct competition ( Ngouajio and Mennan, 2005 ; Yenish et al., 1996 ) or through allelopathic interactions ( Barnes and Putnam, 1986 ). Furthermore, cover crop residues, whether incorporated or left on the soil surface, can affect

Open access

Daniel Oscar Pereira Soares, Karla Gabrielle Dutra Pinto, Laís Alves da Gama, Carla Coelho Ferreira, Prasanta C. Bhowmik, and Sônia Maria Figueiredo Albertino

before its flowering, according to the greatest nutritional input in these plants and to avoid the possibility of infestation. To measure the cover crops residue decomposition, cover crops biomasses were packed in little nylon bags, with a mesh of 2 mm

Full access

S. Alan Walters and Bryan G. Young

fruit skin surface, resulting from pumpkins residing on cover crop or other crop residues, and these pumpkins often garner a premium price compared with those fruit grown in CT that often have soil attached to the fruit ( Walters et al., 2008 ). The wide

Full access

Eric B. Brennan

usually require numerous tillage passes to ensure a uniform seed bed, control weeds, break up compaction from harvest operations, and hasten decomposition of previous crop residue. It is important to highlight that although USDA National Organic Program

Open access

Haley Rylander, Anusuya Rangarajan, Ryan M. Maher, Mark G. Hutton, Nicholas W. Rowley, Margaret T. McGrath, and Zachary F. Sexton

Farmers commonly use intensive tillage in U.S. vegetable production to prepare seedbeds, incorporate crop residue, and remove weeds. Intensive tillage, however, decreases long-term soil health, causing compaction, loss of structure, and loss of

Full access

Jason M. Lilley and Elsa S. Sánchez

systems, which are a form of conservation tillage in which cover crop or previous cash crop residue is left on the soil surface between rows, while a narrow planting row is tilled. Strip tillage that uses cover crops reduces soil erosion ( Alliaume et al