Search Results

You are looking at 41 - 50 of 488 items for :

  • Refine by Access: All x
Clear All
Free access

Steven J. Guldan, Charles A. Martin, Jose Cueto-Wong, and Robert L. Steiner

Three legumes [hairy vetch (Vicia villosa Roth.), barrel medic (Medicago truncatula Gaerth.), and black lentil (Lens culinaris Medik.)] were interseeded into `New Mexico 6-4' chile pepper (Capsicum annuum L.) when plants were 20–30 cm tall (3 Aug., “early” interseeding) or when plants were 30–40 cm tall (16–17 Aug., “late” interseeding) in 1993 and 1994. Our objectives were to determine the effect of legume interseeding on cumulative chile yield, and late-season dry-matter and nitrogen yields of aboveground portions of the legumes. Legumes were harvested on 8 Nov. 1993 and 15 Nov. 1994. Chile yield was not significantly affected by legume interseeding. In 1993, legumes accumulated 57% more dry matter and 55% more N when interseeded 3 Aug. vs. 16 Aug. In 1994, legumes accumulated 91% more dry matter and 86% more N when interseeded 3 Aug. vs. 17 Aug. Aboveground dry-matter yields in 1993 ranged from 1350 kg·ha–1 for black lentil interseeded late to 3370 kg·ha–1 for hairy vetch interseeded early. Nitrogen yields ranged from 52 kg·ha–1 for black lentil interseeded late to 136 kg·ha–1 for hairy vetch interseeded early. In 1994, hairy vetch was the highest yielding legume with dry matter at 1810 kg·ha–1 and N at 56 kg·ha–1 interseeded early, while black lentil yielded the lowest with dry matter at 504 kg·ha–1 and N at 17 kg·ha–1 interseeded late. In the spring following each interseeding year, we observed that hairy vetch had overwintered well, whereas barrel medic and black lentil had not, except when a few plants of barrel medic survived the winter of 1994–95. Results from this study indicate that legumes can be successfully interseeded into chile in the high-desert region of the southwestern United States without a significant decrease in chile yield.

Free access

Rejah Muhyi and Paul W. Bosland

A reliable screening method to detect Rhizoctonia solani Kuhn resistance in chiles (Capsicum annuum L.) was developed using infested corn (Zea mays Bonaf.) kernels as inoculum. The most aggressive New Mexican isolate of R. solani (PWB-25) was used to screen 74 Capsicum accessions for resistance to root rot caused by the fungus. The accessions differed in resistance, with disease ratings ranging from 2.9 to 8.6 on a 0 (no disease) to 9 (seedling dead) scale. The percentage of resistant plants, those in the interaction phenotype index class 0, 1, 2, and 3, ranged from 2.4% to 77.1%. Nineteen accessions representing four species had ≥50% resistant individuals and would be useful in breeding programs.

Full access

James Hancock, Jorge Retamales, Claudia Moggia, Mauricio Lolas, and Paul Lyrene

There is great interest in growing blueberries in Chile. Although only a few hundred hectares are now planted, thousands of hectares are predicted by the turn of the century. There are many areas in the country that are adaptable to blueberry culture, and labor costs are extremely low. Chileans feel they have a golden opportunity to make a profit by producing blueberries during the North American off-season.

Free access

Jose A. Yuri, Claudia Moggia, Carolina A. Torres, Alvaro Sepulveda, Valeria Lepe, and Jose L. Vasquez

The Chilean apple industry has a production area of 37,194 ha ( ODEPA, 2007 ), producing ≈1.4 million tons of apples annually, making it one of the major apple industries in the world. Its exports were over 44 million boxes to more than 70 countries

Free access

Erin Silva, Mark Renz, and Stephanie Walker

Chile pepper (Capsicum annum) production in the southwest can be impacted by many factors. In particular, factors that alter root growth and development can be critical to pepper productivity. Several factors can cause less-than-optimal taproot formation, including irrigation practices, planting method (seeds vs. transplants), climactic conditions, and competition from weed species for limiting resources. The goals of this research were to quantify the root development of chile peppers established from either seeds or transplants under furrow and drip irrigation. Research was conducted in 2005 at Artesia Plant Science Research Center in Artesia, N.M., using a state-of-the-art drip irrigation system. Differences in root development between both irrigation types and planting methods were measured using of the mini-rhizotron image capturing system. Measurements occurred at a weekly basis to document location, root length density, and pattern of root formation. At the time of harvest, yield and fruit quality were evaluated. Direct-seeded chile plants yielded more fruits than transplanted chile under both irrigation regimes. Patterns of root development differed over time for direct-seeded vs. transplanted and furrow vs. drip-irrigated chile peppers. Planting and irrigation method affected root growth differently at various points in the season. These data can aid in the optimization of management strategies for specific production practices.

Open access

John J. McGrady and D. J. Cotter

Abstract

Experiments were conducted in 1979 and 1980 to evaluate anticrustant (H3PO4 and Nalco 2190) effects on stand establishment, growth, and yield of chile pepper (Capsicum annuum L.). While plant stands and fruit yield were not increased by applying H3PO4 over the seeded row in 1979, hypocotyl stress of germinants was reduced. Stands and P content in 1980 were not increased by H3PO4 or Nalco 2190 treatments 1 month after emergence, but plant height was increased significantly by both anticrustants. Yields of fresh green chile peppers were not enhanced by treatments. While germinant stress could be reduced by using anticrustants, it was concluded that a factor other than crusting was limiting chile seedling growth in southern New Mexico.

Free access

Steven J. Guldan, Charles A. Martin, and Constance L. Falk

`Sugar Snap' snap peas (Pisum sativum L.) were interseeded into a stand of `Española Improved' chile pepper (Capsicum annuum L.) in July or Aug. in 1995, 1996, and 1997. Peas were interseeded as one or two rows per bed, giving planting rates of about 92 or 184 kg·ha-1, respectively. Our objectives were to determine: 1) if intercropped pea would reduce chile yield and vice versa; 2) the effects of pea planting rates and dates on pea yield. Intercropped peas reduced chile yield by about 22% in 1995, but had no significant effects in other years. Pea plants from the August intercrops reached the flowering stage but did not produce pods in 1995 or 1996; some small pods were produced from August intercrops in 1997. Final plant densities were lower and less uniform in 1996 than in 1995 or 1997. Intercropped peas yielded less than monocropped peas in all years. Pea yields ranged from 1370 to 3960 kg·ha-1 when monocropped, 31 kg·ha-1 (1996 single-row) to 646 kg·ha-1 (1995 double-row) when intercropped. In 1995 only, the double-row intercrop yielded more peas than the single-row intercrop. Pod yield/plant was reduced 80%, 98%, and 96% in 1995, 1996, and 1997, respectively, by intercropping. Estimated gross revenues for the treatments indicate that, under the price assumptions used in the study, interseeding snap peas into stands of chile in north-central New Mexico is not economically advantageous compared with monocropped chile.

Free access

Freddy Mora, Cristóbal M. Concha, and Carlos R. Figueroa

The chilean strawberry ( F. chiloensis ssp. chiloensis f. chiloensis ), one of the ancestral parents of the cultivated strawberry and domesticated by the native Mapuche, is cultivated in southern Chile in small-scale fields by a few farmers

Free access

J. Baral and P.W. Bosland

Domesticated chile (Capsicum annuum L. var. annuum) is a widely cultivated spice and vegetable crop. It originated in the Western Hemisphere, but spread rapidly throughout the globe after the voyage of Columbus. However, very little is known about the genetic diversity of chile in Asia and especially in Nepal. Thus, research was conducted to document morphological as well as molecular characterization of C. annuum var. annuum landraces collected from Nepal. Genetic diversity in C. annuum var. annuum landraces from Nepal was investigated using randomly amplified polymorphic DNA (RAPD) markers and compared with that of C. annuum var. annuum landraces from the center of diversity, Mexico. RAPD marker based cluster analysis of C. annuum var. annuum clearly separated each accession. All accessions of C. annuum var. annuum from Nepal grouped into a single cluster at a similarity index value of 0.80, whereas, accessions from Mexico grouped into eight different clusters at the same similarity level indicating greater genetic diversity in Mexican accessions. RAPD analysis indicated that the Nepalese chile population went through an additional evolutionary bottleneck or founder effect probably due to intercontinental migrations. Some Nepalese accessions had unique RAPD markers suggesting that additional sources of genetic variation are available in Nepalese germplasm.

Open access

Steven D. Tanksley

Abstract

The natural cross-pollination (NCP) rate was determined for chile pepper (Capsicum annuum L.) utilizing isozyme variation in tester lines. Experiments were conducted over a 2 year period in a total of 5 commercial fields in southern New Mexico. The average NCP for both years was 42% with the rate for individual plants as high as 91%. Such high rates of cross-pollination indicate the need for the strictest precautions in the production of commercial seed, and in the design and execution of breeding procedures.