Search Results

You are looking at 41 - 50 of 167 items for :

  • "Meloidogyne incognita" x
  • Refine by Access: All x
Clear All
Free access

A.G. Hunter, O.L. Chambliss, and J.C. Williams

Four southernpea (cowpea) [Vigna unguiculata (L.) Walp.] cultivars representing various combinations of resistance and susceptibility to blackeye cowpea mosaic virus (BlCMV) and southern root-knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood] were used to determine effectiveness of simultaneous screening of plants for resistance to both pathogens. Plants were inoculated with both pathogens simultaneously, each pathogen separately, or left uninoculated as controls. The resistance classification of the cultivars based on treatments with only one pathogen was not different from that based on the treatment with both pathogens. Virus × nematode interaction was not a significant source of variation in BlCMV symptoms and root-knot nematode galls. Simultaneous screening for both pathogens in southernpeas appears to be a feasible option.

Free access

Zhen-Xiang Lu, G.L. Reighard, W.V. Baird, A.G. Abbott, and S. Rajapakse

Eighteen peach rootstock cultivars, most of Prunus persica (L.) Batsch, were screened for diagnostic random amplified polymorphic DNA (RAPD) markers using synthetic decamer oligonucleotide primers. Twenty of the 80 primers were informative, and 40 amplified DNA bands from the informative primers were selected as RAPD markers. Based on combined banding patterns, all 18 rootstock cultivars were identified with only six of the 20 informative primers. Cluster analysis of the 18 peach rootstock cultivars using 40 RAPD markers produced a dendrogram of genetic relatedness in good agreement with their putative pedigrees. The first major bifurcation in the dendrogram divided these rootstock cultivars into two groups according to their resistance or susceptibility to root-knot nematodes [Meloidogyne incognita (Kofoid and White) Chitwood and M. javanica (Treub) Chitwood].

Free access

Kathryn E. Brunson, Sharad C. Phatak, J. Danny Gay, and Donald R. Sumner

Velvetbean (Mucuna deeringiana L.) has been used as part of the crop rotation in low-input vegetable production in southern Georgia to help suppress populations of root-knot nematode (Meloidogyne incognita) for the past 2 years. Over-wintering cover crops of crimson and subterranean clovers were used the low-input plots and rye was the plow-down cover crop in the conventional plots. Tomatoes, peppers, and eggplant were the vegetable crops grown in these production systems. Following the final harvest in 1992, use of nematicides in the low-input plots was discontinued and velvetbean was then planted into the low-input plots and disked in after 90 days. Results from the 1993–94 soil samples taken before and after velvetbean showed a continuing trend of reduced nematode numbers where velvetbean had been, while most conventional plots that had nematicides applied resulted in increases in nematode populations.

Free access

Mwamburi Mcharo*, Don Labonte, Chris Clark, and Mary Hoy

Using two sweetpotato (Ipomoea batatas (L.) Lam) F1 populations from diverse environments we investigated the AFLP marker profiles of the genotypes for association studies between the molecular markers and southern root-knot nematode (Meloidogyne incognita) resistance expression. Population one consisted of 51 half-sib genotypes developed at the Louisiana State Univ. AgCenter. The second population consisted of 51 full-sibs developed by the East African and International Potato Center sweetpotato breeding programs. Results for nematode resistance expression indicate a binomial distribution among the genotypes. Using analysis of molecular variance, logistic regression and discriminant analysis, AFLP markers that are most influential with respect to the phenotypic trait expression were selected for both populations. A comparative analysis of the power of models from the two statistical models for southern root-knot nematode resistance class prediction was also done. The diversity and possible universal similarity of influential markers between the two populations and the expected impact in sweetpotato breeding programs will be discussed.

Free access

P. D. Dukes and Janice R. Bohac

There are four known physiological races of the southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood]. Races are designated I through 4 and their identifications are based soley on differential hosts. These race problems as related to breeding sweetpotato for resistance to attack by all races are reviewed and discussed. Data are presented showing the reactions of selected cultivar and breeding clones of sweetpotato to all four races. The reactions of races 1 and 3 are generally well—known. Races 2 and 4 apparently are spreading and becoming more numerous in the southern states where soybean and tobacco are grown. Comparative disease indices are presented showing that generally sweetpotatoes were less susceptible to races 2 and 4. However, there were some notable exceptions, for example, `Sulfur' and `Beauregard' were equally susceptible to all races. High resistances to attack by races 2 and 4 were found in `Sumor', `Nemagold', `Excel', W-241 and others.

Full access

Nancy Kokalis-Burelle, C.S. Vavrina, M.S. Reddy, and J.W. Kloepper

Greenhouse and field trials were performed on muskmelon (Cucumis melo) and watermelon (Citrullus lanatus) to evaluate the effects of six formulations of plant growth-promoting rhizobacteria (PGPR) that have previously been shown to increase seedling growth and induce disease resistance on other transplanted vegetables. Formulations of Gram-positive bacterial strains were added to a soilless, peat-based transplant medium before seeding. Several PGPR treatments significantly increased shoot weight, shoot length, and stem diameter of muskmelon and watermelon seedlings and transplants. Root weight of muskmelon seedlings was also increased by PGPR treatment. On watermelon, four PGPR treatments reduced angular leaf spot lesions caused by Pseudomonas syringae pv. lachrymans, and gummy stem blight, caused by Didymella bryoniae, compared to the nontreated and formulation carrier controls. One PGPR treatment reduced angular leaf spot lesions on muskmelon compared to the nontreated and carrier controls. On muskmelon in the field, one PGPR treatment reduced root-knot nematode (Meloidogyne incognita) disease severity compared to all control treatments.

Free access

Howard F. Harrison, Judy A. Thies, Richard L. Fery, and J. Powell Smith

A preliminary screening experiment was conducted to evaluate 47 cowpea [Vigna unguiculata, (L.) Walp.] genotypes for use as a weed-suppressing cover crop. Lines evaluated in this study included forage varieties, PI accessions, experimental breeding lines, and land races of unknown origin. Of these, 11 were selected for further testing on the basis of vigorous growth and weed-suppressing ability. In a field experiment repeated over 4 years, the selected genotypes were not different from the leading cover crop cultivar, `Iron Clay', in biomass production. Vigor ratings, vine growth ratings, and canopy widths of some genotypes exceeded those of `Iron Clay'. Vigor ratings and canopy measurements were efficient selection criteria that could be useful for breeding cover crop cowpea cultivars. All selections except an African cultivar, `Lalita', were highly resistant to southern root knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood], and the genotypes varied in seed size, photoperiod, and response to diseases.

Free access

J. A. Thies and A. Levi

Root-knot nematodes (Meloidogyne incognita, M. arenaria, and M. javanica) cause severe damage to watermelon and resistance has not been identified in any watermelon cultivar. In greenhouse tests, we evaluated 265 U.S. plant introductions (PIs) for nematode resistance (based on root galling and nematode reproduction), and identified 22 PIs of Citrullus lanatus var. citroides as moderately resistant to M. arenaria race 1. In subsequent tests, these 22 PIs exhibited low to moderate resistance to M. incognita race 3 and M. arenaria race 2. Three watermelon (C. lanatus var. lanatus) cultivars (Charleston Gray, Crimson Sweet, and Dixie Lee), three C. colocynthis PIs, and four C. lanatus var. citroides PIs, all previously shown to be susceptible to M. arenaria race 1, were susceptible to M. incognita race 3 and M. arenaria race 2. The C. lanatus var. citroides PIs that are most resistant to both M. incognita and M. arenaria should be useful sources of resistance for developing root-knot nematode resistant watermelon cultivars.

Free access

J.A. Thies, J.D. Mueller, and R.L. Fery

The southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] is a serious pest of pepper (Capsicum annuum L.). Currently, methyl bromide is used for nematode control, but the pending withdrawal of this fumigant from the United States market has resulted in a need for effective alternative root-knot nematode management measures. We evaluated the effectiveness of resistance of `Carolina Cayenne' relative to the susceptible genotypes `Early Calwonder' and PA-136 in greenhouse, microplot, and field studies. In all tests, `Carolina Cayenne' exhibited exceptionally high resistance (minimal galling, minimal nematode reproduction, and no yield reduction) to M. incognita; `Early Calwonder' and PA-136 were highly susceptible. In a test conducted in a heavily infested field, `Carolina Cayenne' outyielded PA-136 by 339%. The exceptionally high resistance exhibited by `Carolina Cayenne' provides an alternative to methyl bromide and other fumigant nematicides for managing root-knot nematodes in pepper.

Free access

R. Mark Hurley, Paul G. Thompson, and Gary W. Lawrence

A factorial test was conducted to evaluate the potential of screening sweetpotato plants to three pathogens simultaneously. The pathogens were Meloidogyne incognita, Fusarium oxysporum, and Streptomyces ipomoea. The test also involved six sweetpotato cultivars and three evaluation times. Evaluation times were 3, 6, and 9 weeks post inoculation. The symptoms evaluated were vascular necrosis, fibrous root necrosis, and gall and egg mass production. For each of the three pathogens, the ability to separate cultivars with intermediate levels of resistance from those with low levels of resistance decreased as post Inoculation time increased. Simultaneous screening was practical if the goal was to select plants with resistance to all three pathogens. Resistances to individual pathogens could not be identified in plants inoculated with all three pathogens.