Search Results

You are looking at 31 - 40 of 336 items for :

  • salt injury x
  • Refine by Access: All x
Clear All
Free access

Jack D. Fry and Ward S. Upham

In 1992 and 1993, 12 postemergence herbicide treatments were applied to field-grown buffalograss [Buchloe dactyloides (Nutt.) Engelm.] seedlings having 1 to 3 leaves and 2 to 4 tillers, respectively. The only herbicide treatments that did not cause plant injury at 1 or 2 weeks after treatment (WAT) or reduce turf coverage 4 or 6 WAT compared to nontreated plots (in 1992 or 1993) were (in kg·ha–1) 0.6 dithiopyr, 0.8 quinclorac, 2.2 MSMA, and 0.8 clorpyralid. Evaluated only in 1993, metsulfuron methyl (0.04 kg·ha–1) also caused no plant injury or reduction in coverage. Fenoxaprop-ethyl (0.2 kg·ha–1) caused severe plant injury and reduced coverage by >95% at 6 WAT. Dicamba reduced coverage by 11% at 6 WAT in 1992 but not 1993. The chemicals (in kg·ha–1) triclopyr (0.6), 2,4-D (0.8), triclopyr (1.1) + 2,4-D (2.8), 2,4-D (3.1) + triclopyr (0.3) + clorpyralid (0.2), and 2,4-D (2.0) + mecoprop (1.1) + dicamba (0.2) caused plant injury at 1 or 2 WAT in 1992 or 1993, but coverage was similar to that of nontreated turf by 6 WAT. Chemical names used: 3,6-dichloro-2-pyridinecarboxylic acid (clorpyralid); 3,6-dichloro-o-anisic acid (dicamba); (+/–)-2-[4-(2,4-dichlorophenoxy)phenoxy]propanoic acid (diclofop); 3,5-pyridinedicarbothioic acid, 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-S,S-dimethyl ester (dithiopyr); 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy] propanoate (fenoxaprop-ethyl); 2-(2,4-dichlorophenoxy)propionic acid (mecoprop); methyl 2-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]carbonyl]amino]sulfonyl]benzoate (metsulfuron methyl); monosodium salt of methylarsonic acid (MSMA); 3,7-dichloro-8-quinolinecarboxylic acid (quinclorac); [(3,5,6-trichloro-2-pyridinyl)oxy] acetic acid (triclopyr); (2,4-dichlorophenoxy) acetic acid (2,4-D).

Full access

Jim Syvertsen and Yoseph Levy

Multiple stresses almost always have synergistic effects on plants. In citrus, there are direct and indirect interactions between salinity and other physical abiotic stresses like poor soil drainage, drought, irradiance, leaf temperature, and atmospheric evaporative demand. In addition, salinity interacts with biotic pests and diseases including root rot (Phytophthora spp.), nematodes, and mycorrhizae. Improving tree water relations through optimum irrigation/drainage management, maintaining nutrient balances, and decreasing evaporative demand can alleviate salt injury and decrease toxic ion accumulation. Irrigation with high salinity water not only can have direct effects on root pathogens, but salinity can also predispose citrus rootstocks to attack by root rot and nematodes. Rootstocks known to be tolerant to root rot and nematode pests can become more susceptible when irrigated with high salinity water. In addition, nematodes and mycorrhizae can affect the salt tolerance of citrus roots and may increase chloride (Cl-) uptake. Not all effects of salinity are negative, however, as moderate salinity stress can reduce physiological activity and growth, allowing citrus seedlings to survive cold stress, and can even enhance flowering after the salinity stress is relieved.

Free access

Yoel Bar, Akiva Apelbaum, Uzi Kafkafi, and Raphael Goren

A study was conducted to elucidate the effects of chloride in the irrigation water on growth and development of two citrus rootstocks. `Cleopatra' mandarin (Citrus reshni Hort. ex Tan) is salt tolerant and `Troyer' citrange (Poncirus Citrus sinensis) is salt sensitive. Increasing chloride from 2 to 48 mm in the irrigation water resulted in increased leaf chloride levels, more severe damage of the leaves, and reduced branch growth. High chloride in the irrigation water also caused increased putrescine (PUT) and decreased spermine (SPM) contents of the leaves. These effects were slight in `Cleopatra' but highly apparent in `Troyer'. The symptoms caused by high chloride were associated with high PUT and low SPM levels in the leaves. PUT may be involved in the development of chloride toxic symptoms, and SPM may protect or have no effect on chloride plant injury. The leaf polyamine profiles of `Troyer' and `Cleopatra' under nonstress chloride conditions were different. In `Troyer' leaves, PUT level was 9-fold higher than in `Cleopatra'; in `Cleopatra' leaves, SPM level was 25-fold higher than in `Troyer'. Nitrate supplement to saline water reduced chloride accumulation in the leaves and reduced the increase in PUT. The possible connection between ethylene production and PUT and SPM levels in the leaves of stressed plants is discussed.

Free access

Raul I. Cabrera

Yield, quality, and nutrient status of `Bridal Pink' (on R. manetti rootstock) roses were evaluated under increasing NaCl salinity and mixed NO3 /NH4 + nutrition. Container-grown plants were irrigated over eight flushes of growth and flowering with nutrient solutions having 100 NO3 - : 0 NH4 +, 75 NO3 : 25 NH4 +, and 50 NO3 : 50 NH4 + ratios in combination with three NaCl concentrations. During the first four flowering flushes, NaCl was supplemented at 0, 5, and 10 mm, but these concentrations were increased to 0, 15, and 30 mm during the last four flushes. Interestingly, NO3 : NH4 + ratios and NaCl concentration had no main effects over any flower yield or quality component evaluated over the 13-month experimental period. Furthermore, visual symptoms of apparent salt injury were just observed during the last three flowering cycles, and mostly on the oldest foliage of plants receiving the highest salt concentrations (30 mm). Leaf N and Na concentrations were not significantly affected by the treatments over the course of the experiment, averaging 3.34% and 45 mg·kg–1, respectively. Leaf Cl concentrations were significantly increased by salt additions, ranging from 1000 to 15,000 mg·kg–1 [0.1% to 1.5% dry weight (DW)]. Correlation analyses revealed that relative dry weight yields increased with leaf Cl concentrations up to 3000 mg·kg–1 (0.3% DW) but were significantly depressed at higher concentrations. These results confirm recent reports suggesting that roses are more tolerant to salinity than their typical classification of sensitive. Furthermore, this is the first known study to report an apparent positive effect of moderate leaf Cl concentrations on rose biomass yields.

Full access

Judson S. LeCompte, Amy N. Wright, Charlene M. LeBleu, and J. Raymond Kessler

Alternative water sources provide an opportunity to reduce the demand for potable water. Greywater could provide homeowners and municipalities with an alternative irrigation source. One common chemical characteristic of greywater is high salt

Free access

Genhua Niu, Denise S. Rodriguez, Kevin Crosby, Daniel Leskovar, and John Jifon

overcome salinity problems is the introduction of salt-tolerant crops. However, limited information exists for salt tolerance of various horticultural crops, including chile peppers. Earlier studies classified pepper as moderately sensitive to salt stress

Open access

Kai Jia, Cunyao Yan, Huizhuan Yan, and Jie Gao

  of   germination   days   corresponding ) Salt - injury   index   = [ ( Germination   rate   of   control   -   Germination   rate   in   each   treatment ) / Germination   rate   of   control ] × 100 % Expt. 2: Salt stress on seedling growth. Seeds

Full access

Louise Ferguson and Steven R. Grattan

There are two ways salinity can damage citrus: direct injury due to specific ions, and osmotic effects. Specific ion toxicities are due to accumulation of sodium, chloride, and/or boron in the tissue to damaging levels. The damage is visible as foliar chlorosis and necrosis and, if severe enough, will affect orchard productivity. These ion accumulations occur in two ways. The first, more controllable and less frequent method, is direct foliar uptake. Avoiding irrigation methods that wet the foliage can easily eliminate this form of specific ion damage. The second way specific ion toxicity can occur is via root uptake. Certain varieties or rootstocks are better able to exclude the uptake and translocation of these potentially damaging ions to the shoot and are more tolerant of salinity. The effect of specific ions, singly and in combination, on plant nutrient status can also be considered a specific ion effect. The second way salinity damages citrus is osmotic effects. Osmotic effects are caused not by specific ions but by the total concentration of salt in the soil solution produced by the combination of soil salinity, irrigation water quality, and fertilization. Most plants have a threshold concentration value above which yields decline. The arid climates that produce high quality fresh citrus fruit are also the climates that exacerbate the salt concentration in soil solution that produces the osmotic effects. Osmotic effects can be slow, subtle, and often indistinguishable from water stress. With the exception of periodic leaching, it is difficult to control osmotic effects and the cumulative effects on woody plants are not easily mitigated. This review summarizes recent research for both forms of salinity damage: specific ion toxicity and osmotic effects.

Free access

Genhua Niu and Raul I. Cabrera

identical to those caused by water stress ( Marschner, 1995 ; Munns, 2002 ). For landscape plants, the typical symptoms of initial salt injury are stunted growth and foliar damage, including leaf necrosis, marginal leaf burn, and premature leaf drop

Full access

S.M. Scheiber, David Sandrock, Erin Alvarez, and Meghan M. Brennan

ornamental landscape industry. Researchers have documented injury from airborne salts to plants growing near the coast ( Edwards and Holmes, 1968 ; Karschon, 1964 ; Malloch, 1972 ). Exposure to water with high salt content reduces or inhibits plant growth