Search Results

You are looking at 31 - 40 of 927 items for :

  • little red fruit x
  • Refine by Access: All x
Clear All
Free access

R.E. McDonald, T.G. McCollum, and E.A. Baldwin

Mature green `Sunbeam' tomato fruit (Lycopersicon esculentum Mill.), were treated in varying order with C2H4, 42°C water for 60 minutes, 38°C air for 48 hours, partial ripening for 48 hours at 20°C, or not treated, and then stored at 2°C for 14 days before ripening at 20°C. Heat treated fruit stored at 2°C and transferred to 20°C ripened normally while 63% of nonheated fruit decayed before reaching red ripe. More chilling injury (CI) developed when C2H4 was applied following heat treatment rather than before. There was more CI in fruit that were 42°C water treated compared with the 38°C air treatment. Less CI developed on fruit that were partially ripened for 2 days at 20°C before a 42°C water treatment rather than following it. At red ripe, nonchilled fruit were firmer than chilled heat treated fruit. Fruit treated in 42°C water were firmer when the heat treatment was applied before the C2H4 treatment rather than following it. Chlorophyll and lycopene content and internal quality characteristics of fruit were similar at the red ripe stage irrespective of C2H4 or heat treatment. Chilling and heat treatments reduced some of the 15 flavor volatiles analyzed. Volatile levels were lower in fruit treated with C2H4 before heat treatment compared with fruit treated with C2H4 following heat treatment. Prestorage heat treatments could allow for storage of mature green tomatoes at low temperatures with little loss in their ability to ripen normally.

Free access

J. A. Flore, M. Ventura, D. Neri, and M. Sakin

Auxin induction of ethylene, and fruit growth rates were investigated as early indicators of NAA thinning response for Golden Delicious, Red Delicious, McIntosh, Empire, and Tydeman's Red over a four period. Abscission at the end of the drop period was correlated with ethylene evolution from leaves 24-48 hours after NAA application and with changes in fruit growth at 2-3 day intervals through 10-14 days after application. Variation in ethylene evolution and fruit growth were also associated with environmental conditions prior to and at the time of NAA application to determine which factors have the greatest influence on response. Ethylene was a better predictor of final fruit drop than changes in fruit size for all varieties tested. However both performed very well. The ethylene bioassay requires more equipment, but the response is more-immediate. Bourse, and spur leaves as well as fruit were capable of producing ethylene in response to NAA application. Thinning response was greatest when all leaves and fruit were treated with NAA, followed by the bourse and spur leaves. Little or no response was produced when the fruit alone were treated. Concentration experiments and radioisotope data indicate that ethylene response is directly related to the amount of NAA absorbed. Regression analysis indicates that approximately 60% of the variation in response can be predicted by ethylene evolution

Free access

Robert C. Ebel, Floyd M. Woods, and Dave Himelrick

Brown rot of peaches is one of the most devastating diseases that can occur before and after harvest. There has been extensive research that has shown that ultraviolet light (UV-C) kills the fungus that causes brown rot. However, it is has not been determined whether UV-C will also change ripening and fruit quality. We applied UV-C to `Loring' peaches that were harvested 10 days before normal harvest. We intentionally picked the fruit early because we wanted to make sure the fruit had not entered the climacteric. The fruit were treated with UV-C and ethylene, skin color, firmness, and soluble solids were measured. We also held fruit at three storage temperatures to determine whether there may be an interaction between UV-C treatment and storage temperature. Ethylene was slightly higher for UV-C treated fruit at 70 °F (20 °C) and 55 °F (12 °C), but not at 40 °F (4 °C). However, there was very little effect on firmness and soluble solids. There was a slight delay in development of red blush. UV-C had little effect on ripening and peach fruit quality.

Free access

S.R. Drake and Tom Eisele

Red color of 2 strains (`Bisbee' and `Red Chief) of `Delicious' apples was increased (25%) by a 10 day delay beyond recommended harvest date. Color of `Oregon Spur' did not change during this 10 day period. Soluble solids content and size were also increased, but firmness decreased by 12%. In 2 of 3 years, firmness at harvest was 73 N or greater in all strains and these fruit lost little firmness during 9 months of CA. Poor firmness (<63 N) at harvest resulted in fruit with unacceptable firmness (53 N) after storage regardless of harvest time or strain. Loss in fruit quality was evident after a 5 day delay in atmosphere establishment with no further loss after a 10 day delay. `Oregon Spur' had the best color regardless of harvest, followed by `Bisbee' and `Red Chief. All strains (`Oregon Spur', `Bisbee' and `Red Chief) had good quality after long term CA. Sensory panelists could not distinguish flavor differences between strains, harvest dates or delay in storage establishment.

Open access

Richard P. Marini

Abstract

Three peach [Prunus persica (L.) Batsch] cultivars varying in age and vigor were dormant pruned, summer pruned, or summer topped for 2 or 3 years, depending on the cultivar. Pruning treatments had little effect on trunk enlargement and shoot growth of mature 4 Sun queen’ and ‘Loring’ trees. Pruning or topping in June and/or July improved light penetration in tree centers. Pruning or topping in July or June and July stimulated shoot growth of young ‘Cresthaven’ trees more than dormant pruning the season following treatment. Pruning treatment had no consistent effects on yield, fruit size, or date of maturity. Red color and soluble solids of ‘Loring’ fruit were not effected by pruning treatment, but flesh firmness was increased for fruit from summer topped trees. ‘Sunqueen’ fruit quality was effected less by pruning treatment than by crop load, canopy position, or harvest date. Red color and soluble solids were greater for fruit from the tree top and on moderately cropping trees than those from the tree interior or trees with a heavy crop. Harvest date influenced all aspects of fruit quality, but the effects were not consistent for both years.

Free access

Mark A. Bennett, David M. Francis, and Elaine M. Grassbaugh

Ethephon (2-chloroethyl phosphonic acid) has been widely used under field conditions as a growth regulator to trigger the ripening of processing tomatoes prior to mechanical harvesting. Recent interest in whole-peeled and diced tomato products has raised questions about ethephon rates, and possible split applications for top quality. This 3-year field study tested two commercial cultivars of processing tomatoes (`OH8245' and `P696') and the effect of various ethephon applications on fruit firmness, color uniformity, and peeling variables. Transplants were established in mid to late May of 1996–1998 on raised beds in single rows at the OSU/OARDC Veg. Crops Branch in Fremont, Ohio. Ethrel applications for each cultivar were: 0, 0.58, 0.58 × 2 applications, 1.17, 1.17 × 2 applications, 1.75, 2.34, 4.68, and 7.02 L·ha–1. Fruit were tested for firmness, color uniformity, pH, titratable acids, and soluble solids. Samples from ethephon treatments of 0, 1.17 × 2 applications, 2.34, 4.68, and 7.02 L·ha–1 were peeled and canned for color inspection and firmness after 18 months storage. Three-year data for red fruit yield showed a typical response to increasing amounts (0 to 7.0 L·ha–1) of applied ethephon. While high rates (4.7 or 7.0 L·ha–1) gave some of the highest red fruit yields, and the greatest percent red fruit values, high rates were also linked with among the lowest fruit solids values. Split application comparisons showed little influence on quality variables examined in this study. However, chroma values were improved (more vivid color) when 2.3 L·ha–1 was applied vs. 1.17 L·ha–1 applied twice. Split applications also tended to produce softer fruit. Our results suggest that single ethephon applications of 1.17 to 2.34 L·ha–1 provide optimal fruit ripening and quality under midwestern U.S. conditions.

Open access

J. T. A. Proctor, W. J. Kyle, and J. A. Davies

Abstract

Global radiation on cloudless days within apple trees varied considerably. At most times on any day absorption of global radiation was dependant on solar zenith angle and was greatest between 1 and 2m from the tree tops. Measurements of penetrating global radiation were similar whether made on E-W or N-W tracks and differed little in trees on M.26 and M.7 except deep in the canopy where energy levels were lower in the latter.

Attenuation of infra-red radiation was less than visible resulting in higher levels of infra-red relative to visible deep in the canopy.

Apples from trees on M.7 had less red color than those on M.26 but the amount of red color formed was positively correlated with global radiation. At the same global radiation fruit color was better on M.26 than on M.7. This may, in part, be a rootstock or tree training effect. An estimated minimum energy of 250 cal cm-2 day-1 was necessary for the initiation and maintenance of red color in apples.

Free access

James R. Cooksey, Brian A. Kahn, and James E. Motes

While ethephon [(2-chloroethyl) phosphonic acid] has increased yields of red fruits, its use as a pepper (Capsicum annuum L.) fruit ripening agent has been limited by premature fruit abscission and defoliation. We tested ethephon solutions of 0, 1500, 3000, 4500, and 6000 μl·liter-1 with or without 0.1M Ca(OH)2 as a one-time foliar application to field-grown paprika pepper in southwestern Oklahoma. There was a linear increase in fruit abscission with increasing ethephon rates in two out of three years, with or without added calcium. Ethephon at 6000 μl·liter-1 improved the percent of total fruit weight due lo marketable fruits in two out of three years, primarily by decreasing the weight of harvested green fruits. However, ethephon never significantly increased the dry weight of harvested marketable fruits over that obtained from the control. There also was no effect of ethephon on the intensity of red pigment extracted from dehydrated marketable fruits. The only significant effect of Ca(OH)2 was an undesirable increase in the retention of green fruits on the plants. Ethephon had little value as a fruit ripening agent for paprika under the conditions of our studies, and Ca(OH)2 was not useful as an additive to ethephon sprays.

Free access

Peter D. Petracek, D. Frank Kelsey, and Craig Davis

The effect of high-pressure washing (HPW) on the surface morphology and physiology of citrus fruit was examined. Mature white (Citrus paradisi Macf. `Marsh') and red (Citrus paradisi Macf. `Ruby Red') grapefruit, oranges (Citrus sinensis L. `Hamlin'), and tangelos (Citrus reticulata Blanco × Citrus paradisi Macf. `Orlando') were washed on a roller brush bed and under a water spraying system for which water pressure was varied. Washing white grapefruit and oranges for 10 seconds under conventional low water pressure (345 kPa at cone nozzle) had little effect on peel wax fine structure. Washing fruit for 10 seconds under high water pressure (1380 or 2760 kPa at veejet nozzle) removed most epicuticular wax platelets from the surface as well as other surface debris such as sand grains. Despite the removal of epicuticular wax, HPW did not affect whole fruit mass loss or exchange of water, O2, or CO2 at the midsection of the fruit. Analysis of the effect of nozzle pressure (345, 1380, or 2760 kPa), period of exposure (10 or 60 seconds), and wax application on internal gas concentrations 18 hours after washing showed that increasing nozzle pressure increased internal CO2 concentrations while waxing increased internal ethylene and CO2 concentrations and decreased O2 concentrations. An apparent wound ethylene response was often elicited from fruit washed under high pressures (≥2070 kPa) or for long exposure times (≥30 seconds).

Free access

Richard Bestwick, X. Good, J. Kelloogg, D. Langhoff, W. Matsumura, W. Wagoner, and G. Cloud

The gene encoding S-adenosylmethionine hydrolase (SAMase) was transferred to tomato (Lycopersicon esculentum, cv. large red cherry) as a means of reducing ethylene biosynthesis in the ripening fruit. S-adenosylmethionine (SAM), the penultimate precursor to ethylene in plants. is converted to methylthioadenosine and homoserine by SAMase thereby reducing the capacity of the transgenic plant to synthesize ethylene. We have used both constitutive and fruit-specific tomato promoters to regulate SAMase gene expression. Whereas the constitutive CaMV 35S:SAMase chimeric gene expressed active SAMase and conferred a 50-60% reduction in ethylene biosynthesis in a leaf disc assay, there was little effect on fruit ethylene synthesis or postharvest ripening physiology. The use of either the tomato E4 or E8 promoters restricted SAMase expression to ripening fruit which caused a substantial (80-90%) reduction in fruit ethylene synthesis and a profound effect on fruit ripening. SAMase expression levels reached 0.1% of total cellular protein as measured on western blots using anti-SAMase monoclonal antibodies. Field trial fruit picked al the mature green stage accumulated less lycopene and were twice as firm as controls over a six week period. Vine-ripened fruit had near-normal levels of lycopene, were firmer at harvest than controls, and did not lose firmness over a two week period. Taste, vitamin content and tomatine content were superior or equivalent to control tomatoes.