Search Results

You are looking at 31 - 40 of 674 items for :

  • Refine by Access: All x
Clear All
Full access

Kathryn M. Kleitz, Marisa M. Wall, Constance L. Falk, Charles A. Martin, Steven J. Guldan, and Marta D. Remmenga

Field studies were conducted to determine the production potential of echinacea (Echinacea purpurea), valerian (Valeriana officinalis), mullein (Verbascum thapsus) and yerba mansa (Anemopsis californica) medicinal herbs at two sites in New Mexico. Las Cruces, N.M., is at an elevation of 3,891 ft (1,186 m) and has an average of 220 frost free days per year, whereas Alcalde, N.M., is at an elevation of 5,719 ft (1,743 m) and averages 152 frost-free days per year. In-row plant spacings of 12, 18 and 24 inches (30.5, 45.7, and 61.0 cm) were compared at both locations. The corresponding plant densities for the 12, 18 and 24 inch spacings were 14,520 plants/acre (35,878 plants/ha), 9,680 plants/acre (23,919 plants/ha), and 7,260 plants/acre (17,939 plants/ha), respectively. Data were collected on growth rates, fresh yield, and dry yield for the herbs grown at each site. All crops at both sites had highest plot yields at the 12-inch spacing, suggesting that optimum in-row plant spacings are at or below the 12-inch spacing. Yields of 1.94 ton/acre (4.349 t·ha-1) of dried yerba mansa root, 0.99 ton/acre (2.219 t·ha-1) of dried echinacea root, and 2.30 ton/acre (5.156 t·ha-1) of dried mullein leaves were realized at the 12-inch spacing at Las Cruces in southern New Mexico. Yields of 1.16 ton/acre (2.600 t·ha-1) of dried valerian root, 0.93 ton/acre (2.085 t·ha-1) of dried echinacea root, and 0.51 ton/acre (1.143 t·ha-1) of dried mullein leaves were harvested at the 12-inch spacing at Alcalde in northern New Mexico. Yields of fresh echinacea flowers were 1.56 ton/acre (3.497 t·ha-1) in Las Cruces. Yields of dried mullein flowers were 0.68 ton/acre (1.524 t·ha-1) in Las Cruces and 0.66 ton/acre (1.479 t·ha-1) in Alcalde.

Free access

Renee G. Nation, Jules Janick, and James E. Simon

Journal Paper no. 13,163, Purdue Univ. Agr. Expt. Sta., West Lafayette, IN 47907. This research was supported by a grant to R.G.N. by the Herb Society of America (Mentor, Ohio) and by a grant from the Purdue Univ. Agr. Expt. Sta. (Specialty

Free access

Alexander A. Csizinszky

Sweet marjoram [(marjoram) Origanum majoranna], Italian parsley [(parsley) Petroselinum crispum], Summer savory [(savory) Satureja hortensis], and thyme (Thymus vulgaris) were evaluated for their yield potential during Fall–Winter–Spring (Oct.–May) 1998–99. The herbs were grown in a light sandy soil with the full-bed polyethylene mulch-micro(trickle) irrigation system. Experimental design was a split-plot replicated three times. Main plots were two N–P–K treatments: 0 N–P–K or N and K from a liquid 4–0–3.32 (N–P–K) fertilizer injected at 0.77 N and 0.64 K kg·ha–1·day–1. Sub-plots were four compost rates at 0x, 1x, 2x, and 4x (1x = 4.5 t·ha–1). Early and seasonal total yields of marjoram and savory were similar with injected N + K and 0x compost to yields with compost and with or without injected N + K fertilizer. Yields of parsley and thyme increased with increasing compost rates and were best with compost plus liquid N + K. Postharvest soil concentrations of NO3-N were lower in the parsley, than in the marjoram, savory and thyme plots. Residual concentrations of all other elements were similar with or without injected N + K or compost treatments.

Free access

A. A. Csizinszky

Italian parsley (parsley) Petroselinum crispum, summer savory (savory) Satureja hortensis, sweet marjoram (marjoram) Origanum majoranna, and thyme Thymus vulgaris, were evaluated for their yield potential in multiple harvest during the fall–winter–spring (Dec.–May 1997–98). The herbs were grown with the full-bed polyethylene mulch-micro (trickle) irrigation system. Experimental design was a split-plot arranged in three randomized complete blocks. Main plots were two N–P–K treatments: 0 N–P–K or N and K from a liquid 4N–0P–3.32K fertilizer injected at 0.77 N and 0.64 K kg/ha per day. In the subplots, compost was applied in a 4 to 8 inches wide band on the pre-bed at 0x, 1x, 2x, and 4x rates (1x = 4.5 t·ha–1). Parsley and marjoram yields in the first three harvests and thyme yields in the first two harvests were similar with 0x compost and N + K injected fertilizers to yields with 3x and 4x compost rates with no injected N + K fertilizers. For the season, yields were higher with injected N + K fertilizers with or without compost, than in the compost treated plots with no N + K fertilizers.

Full access

Constance L. Falk, Hildegard van Voorthuizen, Marisa M. Wall, Kathryn M. Kleitz, Steven J. Guldan, and Charles A. Martin

Cost and return estimates are presented for selected medicinal herbs grown in a plant-spacing study at two sites in New Mexico. The selected herbs were echinacea [Echinacea purpurea (L.) Moench], valerian (Valeriana officinalis L.), and yerba mansa (Anemopsis californica Nutt.). Significant returns to land and risk were observed in the crops grown at the closest plant spacing, 12 inches (30 cm). Return to land and risk after two growing seasons from echinacea was estimated for a 10-acre (4-ha) farm to be $16,093/acre ($39,750/ha) in Las Cruces and $14,612/acre ($36,092/ha) in Alcalde.

Open access

Elisa Solis-Toapanta, Paul Fisher, and Celina Gómez

edible plants (e.g., herbs, greens, and low-profile fruiting vegetables) with indoor farming, provides an opportunity to support the gardening experience for consumers with limited access to a growing space (from now on referred to as “indoor gardeners

Full access

Jeanine M. Davis

Open access

Rahmatallah Gheshm and Rebecca Nelson Brown

dye ( Gohari et al., 2013 ; Mzabri et al., 2019 ). Like many herbs, saffron contains phytochemicals with important medicinal properties that are currently being evaluated as treatments for anxiety, cancer, Parkinson’s disease, Alzheimer’s disease

Open access

Rhuanito Soranz Ferrarezi and Donald S. Bailey

var. thyrsiflorum ). Basil cultivars can be produced for different target markets such as essential oils, pharmaceuticals, ornamental plants, or as a culinary herb for fresh or dry spices ( Kaurinovic et al., 2011 ; Walters and Currey, 2015 ). Purple

Free access

Gennaro Fazio, Herb S. Aldwinckle, Terence L. Robinson, and James Cummins

The Geneva® Apple Rootstock Breeding program, which was initiated in 1968 by Dr. James Cummins and Dr. Herb Aldwinckle of Cornell University and which has been continued as a joint breeding program with the U.S. Dept. of Agriculture Agricultural Research Service (USDA-ARS) since 1998, has released a new semi-dwarfing apple rootstock which is named Geneva® 935 or G.935. G.935 (a progeny from a 1976 cross of `Ottawa 3' × `Robusta 5') is a selection that has been widely tested at the New York State Agricultural Experiment Station in Geneva, N.Y., in commercial orchards in the United States and at research stations across the United States and Canada. G.935 is a semi-dwarfing rootstock that produces a tree slightly larger than M.26. G.935 is the most precocious and productive semi-dwarf rootstock we have released. It has had similar yield efficiency to M.9 along with excellent fruit size and wide crotch angles. It showed no symptoms of winter damage during the 1994 test winter in N.Y. G.935 is resistant to fire blight and Phytophthora; however. it is susceptible to infestations by woolly apple aphids. G.935 has shown tolerance to replant disease complex in several trials. It has good propagation characteristics in the stool bed and produces a large tree in the nursery. G.935 has better graft union strength than M.9, but will require a trellis or individual tree stake in the orchard to support the large crops when the tree is young. G.935 will be a possible replacement for M.26. Suggested orchards planting densities with this rootstock are 1,500-2,500 trees/ha. It has been released for propagation and sale by licensed nurseries. Liners will be available in the near future.