Search Results

You are looking at 31 - 40 of 109 items for :

  • "nutrient film technique" x
  • Refine by Access: All x
Clear All
Free access

Desmond G. Mortley, Douglas R. Hileman, Conrad K. Bonsi, Walter A. Hill, and Carlton E. Morris

Two sweetpotato [Ipomoea batatas (L.) Lam] genotypes (TU-82-155 and NCC-58) were grown hydroponically and subjected to a temporary loss of lighting in the form of 14 days of prolonged darkness compared with a lighted control under standard daily light periods to determine the impact on growth responses and storage root yield. Vine cuttings of both genotypes were grown in rectangular channels. At 65 days after planting, lights were turned off in the treatment chambers and replaced by a single incandescent lamp, providing between 7 and 10 µmol·m−2·s−1 photosynthetic photon flux (PPF) for 18 hours, and the temperature lowered from 28/22 °C light/dark, to a constant 20 °C. Plants remained under these conditions for 14 days after which the original light level was restored. Growth chamber conditions predark included, a PPF mean provided by 400-W metal halide lamps, of 600 ± 25 µmol·m−2·s−1, an 18-hour light/6-hour dark cycle and a relative humidity of 70% ± 5%. The nutrient solution used was a modified half-Hoagland with pH and electrical conductivity (EC) maintained between 5.5–6.0 and 1000–1200 μS·cm−1, respectively, and was adjusted weekly. Storage root number and fresh weight were similar regardless of treatments. Plants exposed to prolonged darkness produced 10.5% and 25% lower fibrous root fresh and dry mass, respectively, but similar foliage yield and harvest index (HI). ‘NCC-58’ produced an average of 31% greater storage root yield than that of ‘TU-82-155’ but the number of storage roots as well as % dry matter (%DM) were similar. ‘NCC-58’ also produced 31% greater fibrous root dry weight, whereas ‘TU-82-155’ produced a 44% greater HI. The significant interaction between prolonged darkness and cultivars for %DM of the storage roots showed that DM for ‘TU-82-155’ was 18.4% under prolonged darkness and 17.9% in the light. That for ‘NCC-58’ was 16.4% under prolonged darkness compared with 19.4% (14.8% greater) for plants that were not subjected to prolonged darkness. The evidence that there were no adverse impacts on storage root yield following the exposure to prolonged darkness suggests that the detrimental effects were below the detectable limits for these cultivars in response to the short perturbation in the available light and that sweetpotatoes would be hardy under short-term failure situations.

Free access

K. Stanciel, D.G. Mortley, D.R. Hileman, P.A. Loretan, C.K. Bonsi, and W.A. Hill

The effects of elevated CO2 on growth, pod, and seed yield, and gas exchange of `Georgia Red' peanut (Arachis hypogaea L.) were evaluated under controlled environmental conditions. Plants were exposed to concentrations of 400 (ambient), 800, and 1200 μmol·mol–1 CO2 in reach-in growth chambers. Foliage fresh and dry weights increased with increased CO2 up to 800 μmol·mol–1, but declined at 1200 μmol·mol–1. The number and the fresh and dry weights of pods also increased with increasing CO2 concentration. However, the yield of immature pods was not significantly influenced by increased CO2. Total seed yield increased 33% from ambient to 800 μmol·mol–1 CO2, and 4% from 800 to 1200 μmol·mol–1 CO2. Harvest index increased with increasing CO2. Branch length increased while specific leaf area decreased linearly as CO2 increased from ambient to 1200 μmol·mol–1. Net photosynthetic rate was highest among plants grown at 800 μmol·mol–1. Stomatal conductance decreased with increased CO2. Carboxylation efficiency was similar among plants grown at 400 and 800 μmol·mol–1 and decreased at 1200 μmol·mol–1CO2. These results suggest that CO2 enrichment from 400 to 800 μmol·mol–1 had positive effects on peanut growth and yield, but above 800 μmol·mol–1 enrichment seed yield increased only marginally.

Open access

Nathan J. Eylands, Michael R. Evans, and Angela M. Shaw

nutrient film technique (NFT) system (unofficial). Treatment 1 = no Escherichia coli , no saponin addition; Treatment 2 = E. coli , no saponin addition; Treatment 3 = E. coli , 12.5 µg·mL −1 saponin; Treatment 4 = E. coli , 25 µg·mL −1 saponin

Full access

Ahmet Korkmaz, Wallace G. Pill, and Bruce B. Cobb

Raw, pelleted or germinated seeds of `Cortina' lettuce (Lactuca sativa L.) were sown in phenolic foam cubes preplant soaked in water or fullstrength nutrient solution (2 mmho·cm−1, 2 dS·m−1). The seeds were left uncovered or covered with fine vermiculite (grade 5), and seedling emergence characteristics were subsequently determined. Shoot fresh masses and their coefficients of variation (cv) by 9 days after planting (1 or 2 true leaves) and by 31 days after planting (4 or 5 true leaves) also were determined. Soaking the cubes in nutrient solution rather than water increased seedling emergence percentage and rate, and increased shoot fresh masses by 9 or 31 days after planting. This increased shoot fresh mass was accompanied by lower cv of shoot fresh mass by 9 days after planting, but not by 31 days after planting. Covering seeds with vermiculite decreased emergence from 99% to 93%, but increased shoot fresh mass by 9 and 31 days after planting when cubes were soaked in water, but not in nutrient solution. Seed treatments influenced shoot fresh mass at 9 and 31 days after planting in the order germinated > pelleted > raw. Germinated seeds resulted in lower cv of shoot fresh mass (24%) than raw or pelleted seeds (29%) by 31 days after planting. Thus, sowing germinated seeds into foam cubes soaked in full-strength nutrient solution, with or without covering the seeds with vermiculite, produced the heaviest and most uniform seedlings.

Full access

Robert C. Hochmuth and George J. Hochmuth

The evolution of plastic uses (excluding glazing) in the production of greenhouse vegetables is presented. Plastics are used in almost every aspect of crop production, including providing a barrier to the soil, lining crop production troughs, holding soil and soilless media, and providing a nutrient film channel. Irrigation systems have become very elaborate, with various plastic products used to transport water and nutrients and to provide a means of emitting nutrient solution to the crop. The greenhouse environment is managed from several plastic components, including air distribution tubes, shade materials, and energy curtains. Plastics are now common in greenhouse vegetable crop training, insect monitoring, postharvest handling, storage, and marketing.

Free access

D. Mortley, P. Loretan, C. Bonsi, W. Hill, and C. Bonsi

An experiment was conducted in environmental growth chambers to study the response of sweet potato to relative humidity (RH). Twenty-four vine cuttings of `TI-155' sweet potato were planted in growth channels in a modified half Hoagland's solution using the nutrient film technique. Plants were exposed to constant RH levels of 50% or 85%. Temperature regimes of 20/22 C were maintained during the light/dark periods with an irradiance level of 600 umol m-2 s1, and a 14 hr/10 hr photoperiod. Plants were harvested 120 days after planting and yield data was taken. High RH (85%) resulted in significant increases in number of storage roots/plant, storage root fresh and dry weight, single leaf photosynthesis and stomatal conductance than at 50% RH. Foliage dry weight and leaf temperature was higher at 50% than 85% RH.

Free access

Jennifer L. Seminara, Desmond G. Mortley, Philip A. Loretan, and Beverly Smith

Two trials were conducted to determine the effect of duration of storing vine cuttings on yield of sweetpotatoes grown under greenhouse conditions in nutrient film technique. TI-155 sweetpotato [Ipomoea batatas (L). Lam.] vine cuttings with leaves removed were stored at room temperature in an open basket for 0, 3, 5, and 7 days before planting in a complete randomized design with two replications. A modified half Hoagland's nutrient solution was used. Nutrient solution pH was maintained between 5.5 and 6.0 and changed every 2 weeks. Salinity, electrical conductivity, and solution temperature were monitored at regular intervals. Results show a trend toward increased percent dry matter as storage duration increased. Storing vine cuttings for 5 days produced the highest yield of storage root fresh and dry weights. Foliage fresh and dry weights were not influenced by preplanting treatments.

Free access

Miguel Urrestarazu, Pilar Carolina Mazuela, Abdelaziz Boukhalfa, Antonia Arán, and María del Carmen Salas

Based on a new structure for plastic culture channels, a new system for soilless culture called New Growing Systems (NGS) has been developed. It is similar to the nutrient film technique (NFT) but with several potential advantages. Each NGS growing channel has five plastic layers and a large number of holes, there is a dripper every 0.5 m above the first layer of plastic, and each dripper supplies the nutrient solution which flows from the second layer over the others to the end. Three separate greenhouse experiments with tomato, cucumber, and sweet pepper using NGS channels were conducted in Almería (southeastern Spain). The oxygen content in the circulating nutrient solutions was determined at different points and different times along the channels of all crops. Depletion of oxygen content in the nutrient solution was lower than NFT channels. Oxygen content in NGS showed some advantages compared to NFT.

Free access

Gary W. Stutte

NASA has investigated the use of recirculating nutrient film technique (NFT) systems to grow higher plants on long-duration space missions for many years and has demonstrated the feasibility of using recirculating systems on numerous crop species. A long duration (418-day) experiment was conducted at Kennedy Space Center, Fla., to evaluate the feasibility of using recirculating hydroponics for the continuous production of Solanum tuberosum L. `Norland'. The productivity of four sequential batch plantings was compared to staggered harvest and plantings. The accumulation of bioactive organic compounds in the nutrient solution resulted in reduced plant height, induced early tuber formation, and increased harvest index of the crops in both production systems. The changes in crop development were managed by increasing planting density and reducing cycle time to sustain production efficiency.

Free access

Anita L. Hayden

Hydroponic and aeroponic production of medicinal crops in controlled environments provides opportunities for improving quality, purity, consistency, bioactivity, and biomass production on a commercial scale. Ideally, the goal is to optimize the environment and systems to maximize all five characteristics. Examples of crop production systems using perlite hydroponics, nutrient film technique (NFT), ebb and flow, and aeroponics were studied for various root, rhizome, and herb leaf crops. Biomass data comparing aeroponic vs. soilless culture or field grown production of burdock root (Arctium lappa), stinging nettles herb and rhizome (Urtica dioica), and yerba mansa root and rhizome (Anemopsis californica) are presented, as well as smaller scale projects observing ginger rhizome (Zingiber officinale) and skullcap herb (Scutellaria lateriflora). Phytochemical concentration of marker compounds for burdock and yerba mansa in different growing systems are presented.