Search Results

You are looking at 31 - 40 of 714 items for :

  • "irradiance" x
  • Refine by Access: All x
Clear All
Free access

Trinidad Reyes, Terril A. Nell, James E. Barrett, and Charles A. Conover

This experiment was conducted to evaluate the interior performance of Chrysalidocarpus lutescens grown for 8 months under 481, 820, and 1241 μmol·m–2·s–1 and fertilized weekly with a 20N–4.7P–16.6K soluble fertilizer at 440, 880, and 1660 mg/pot. Afterwards, plants were placed indoors and maintained at 20 μmol·m–2·s–1 for 12 h daily at 21±1C and a relative humidity of 50%±5% for 3 months. At the end of the production phase, light compensation point (LCP) varied from 243 μmol·m–2·s–1 at the high irradiance level to 140 μmol·m–2·s–1 at the lowest one. Chlorophyll concentration in the leaves was not affected by irradiance or fertilizer rate. Starch concentration in stems and roots were higher the lower the fertilizer rate applied during production and the higher the irradiance level. After 3 months indoors, LCP declined for all the treatments, but the lowest LCP reached, 126 μmol·m–2·s–1, was still too high if the plant has to survive an interior environment. After the interior holding period, a 45% to 55% reduction was observed on leaf, stem, and root soluble sugar concentrations, and stem and root starch concentrations decreased by 97%, and 62% to 72%, respectively, compared to the concentration at the end of production. The number of fronds increased in all treatments during the postproduction evaluation. However, the drastic carbohydrate concentration depletion during the interior holding period indicates that C. lutescens is not a species for extended use under very low interior light conditions.

Free access

Abbas M. Lafta and James H. Lorenzen

Growth chamber and greenhouse experiments were conducted to investigate the effect of temperature and irradiance on foliar glycoalkaloids of three potato genotypes (Solanum tuberosum L.) that differ in glycoalkaloid content. Two genotypes (ND4382-17 and ND4382-19) produced the acetylated glycoalkaloids, leptine I and II, that contribute resistance to the Colorado potato beetle (CPB, Leptinotarsa decemlineata Say). The glycoalkaloids were separated and quantified by high performance liquid chromatography. Exposure of plants to high temperature (32/27 °C, 14-hour day/10-hour night) for 3 weeks under a 14-hour photoperiod with an irradiance of 475 μmol·m-2·s-1 significantly increased the levels of leptines I and II, solanine, and chaconine compared to that at low temperature (22/17 °C). Increases in foliar leptines and total glycoalkaloids at high temperature were 90% and 169%, respectively. Growing potato plants at low irradiance (75% reduction) for 2 or 4 weeks resulted in a significant reduction in the levels of leptine I and II (46%), solanine (43%), and chaconine (38%) compared to nonshaded plants. Transferring plants from high to low irradiance or from low to high irradiance for 2 weeks caused a decrease and an increase in glycoalkaloid concentration, respectively. Therefore, both temperature and irradiance influenced foliar levels of glycoalkaloids in potato plants without changing the leptines and solanine to chaconine ratios. Thus, irradiance and temperature influenced glycoalkaloid compounds that can effect resistance to CPB, especially leptine I and II.

Free access

D. Zhang, A.M. Armitage, J.M. Affolter, and M.A. Dirr

Dense-flowered loosestrife is a quantitative long-day (LD) plant. Plants given a LD photoperiod (16 hours) flowered 21 and 34 days earlier than plants given 12- and 8-hour photoperiods, respectively. Plants under LDs produced significantly more flowers than those under 8- and 12-hour photoperiods. Only 1 week of LD was needed for 100% flowering; however, optimum flower count and size were produced with 3 weeks of LD. Plant dry weight did not differ significantly among treatments; however, LDs produced fewer but larger leaves, particularly those subtending the inflorescence. Total plant growth increased as temperature increased, but lower temperature (10C) decreased flower initiation and prevented flower development. High temperature (26C) reduced the persistence of open flowers. The optimum temperature for dense-flowered loosestrife growth was ≈20C. Flowering was accelerated and dry weight production increased as irradiance levels increased from 100 to 300 μmol·m–2·s–1.

Free access

Terril A. Nell and Cor Vonk Noordegraaf

Miniature flowering potted `Orange Rosamini' rose plants (Rosa × hybrida) were placed directly from production into simulated transport (STR) for 3 days at 5C and then into a retail handling treatment for 0, 1, 2, or 4 days. In the retail handling treatment, plants placed at 1 W·m-2 were then moved into a final postproduction irradiance level of 4 W·m-2; plants placed at 4 W·m-2 were then moved into a final postproduction irradiance level of 1 W·m-2. Also, a no-STR control treatment, plants placed directly into final postproduction environment (no transport or retail handling treatment), was included. All plants were placed into a final postproduction irradiance level (1 or 4 W·m-2) for 3 weeks to evaluate the effects of postproduction irradiance. The retail handling and postproduction environments were maintained at 20 ± 1C, 1 or 4 W·m-2 of irradiance (12 hours daily) from cool-white fluorescent lamps, and relative humidity (RR) of 60% ± 5% to simulate retail and/or consumer home conditions. Little difference was observed due to retail handling treatment or postproduction irradiance after 1 week. At weeks 2 and 3 of postproduction, there were 40% to 50% more open flowers on the no-STR plants maintained at 4 W·m-2 than on those maintained at 1 W·m-2 or on STR plants maintained at 1 or 4 W·m-2 postproduction irradiance. At week 3 of postproduction, plants with STR maintained at 1 W·m-2 had no buds showing color, while those maintained at 4 W·m-2 had three to five buds showing color. However, the no-STR control plants had one bud showing color at week 3, regardless of postproduction irradiance level. These results indicate that the detrimental effects of transport, i.e., bud drop, likely can be minimized by high postproduction irradiance levels following transport.

Free access

Nihal C. Rajapakse, William B. Miller, and John W. Kelly

Low-temperature storage potential of rooted cuttings of garden chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] cultivars and its relationship with carbohydrate reserves were evaluated. Storage of chrysanthemum cuttings at -1 and -3 °C resulted in freezing damage. Visual quality of rooted cuttings stored at 0 or 3 °C varied among cultivars. Quality of `Emily' and `Naomi' cuttings was reduced within a week by dark storage at 0 or 3 °C due to leaf necrosis, while `Anna' and `Debonair' cuttings could be held for 4 to 6 weeks without significant quality loss. In `Anna' and `Debonair', low-temperature storage reduced the number of days from planting to anthesis regardless of storage duration. However, flowers of plants grown from stored cuttings were smaller than those of nonstored cuttings. At the beginning of storage, `Emily' and `Naomi' had lower sucrose, glucose, and fructose (soluble sugars) content compared to `Anna' and `Debonair'. Regardless of temperature, leaf soluble sugar was significantly reduced by dark storage for 4 weeks. In stems, sucrose and glucose were reduced while fructose generally increased during low-temperature storage probably due to the breakdown of fructans. Depletion of soluble sugars and a fructan-containing substance during low-temperature dark storage was greater in `Emily' and `Naomi' than in `Anna' and `Debonair'. Low irradiance [about 10 μmol·m-2·s-1 photosynthetically active radiation (PAR) from cool-white fluorescent lamps] in storage greatly improved overall quality and delayed the development of leaf necrosis in `Naomi'. Cuttings stored under light were darker green and had a higher chlorophyll content. Leaf and stem dry weights increased in plants stored under medium and high (25 to 35 μmol·m-2·s-1 PAR) irradiance while no change in dry weight was observed under dark or low light. Results suggest that the low-temperature storage potential of chrysanthemum cultivars varies considerably, and provision of light is beneficial in delaying the development of leaf necrosis and maintaining quality of cultivars with short storage life at low temperatures.

Free access

David B. Rubino

Fifteen cultivated genotypes of Exacum affine Balf. were evaluated for flower development and for flower and leaf color at 0 days (marketable stage, ≈ 25% of plant canopy covered with flowers), and after 14 and 28 days of maintenance in a low-irradiance environment (≈ 1 μmol·m-2·s-1 photosynthetically active radiation from cool-white fluorescent lights for 12 hours daily). Flowering and flower color development were reduced, but leaf color improved during maintenance under low irradiance. Variability was observed among the 15 genotypes for flower bud and flower color development in a low-irradiance environment.

Free access

Douglas A. Bailey and William B. Miller

Plants of Euphorbia pulcherrima Wind. `Glory' were grown under 13.4, 8.5, or 4.0 mol·m-2·day-1 and sprayed with water (control); 2500 mg·liter-1 daminozide + 1500 mg·liter-1 chlormequat chloride (D+C); 62.5 mg·liter-1 paclobutrazol; or 4, 8, 12 or 16 mg·liter-1 uniconazole to ascertain plant developmental and pest-production responses to the treatment combinations. Days to anthesis increased as irradiance was decreased. Anthesis was delayed by the D+C treatment, while other growth retardant (GR) treatments had no effect on anthesis. Irradiance did not affect plant height at anthesis, but all GR treatments decreased height over control plants. Bract display and bract canopy display diameters declined as irradiance was decreased. Growth retardants did not affect individual bract display diameters, but all GR treatments except paclobutrazol reduced bract canopy display diameter. Plants grown under lower irradiance had fewer axillary buds develop, fewer bract displays per plant, and fewer cyathia per bract display. Cyathia abscission during a 30 day post-anthesis evaluation was not affected by treatment; however, plant leaf drop was linearly proportional to irradiance. All GR treatments increased leaf drop over controls, and the D+C treated plants had the highest leaf loss. Results indicate the irradiance and GR treatments during production can affect poinsettia crop timing, plant quality at maturity, and subsequent post-production performance.

Free access

Douglas A. Bailey and William B. Miller

Plants of Euphorbia pulcherrima Wind. `Glory' were grown under 13.4, 8.5, or 4.0 mol·m-2·day-1 and sprayed with water (control); 2500 mg·liter-1 daminozide + 1500 mg·liter-1 chlormequat chloride (D+C); 62.5 mg·liter-1 paclobutrazol; or 4, 8, 12 or 16 mg·liter-1 uniconazole to ascertain plant developmental and pest-production responses to the treatment combinations. Days to anthesis increased as irradiance was decreased. Anthesis was delayed by the D+C treatment, while other growth retardant (GR) treatments had no effect on anthesis. Irradiance did not affect plant height at anthesis, but all GR treatments decreased height over control plants. Bract display and bract canopy display diameters declined as irradiance was decreased. Growth retardants did not affect individual bract display diameters, but all GR treatments except paclobutrazol reduced bract canopy display diameter. Plants grown under lower irradiance had fewer axillary buds develop, fewer bract displays per plant, and fewer cyathia per bract display. Cyathia abscission during a 30 day post-anthesis evaluation was not affected by treatment; however, plant leaf drop was linearly proportional to irradiance. All GR treatments increased leaf drop over controls, and the D+C treated plants had the highest leaf loss. Results indicate the irradiance and GR treatments during production can affect poinsettia crop timing, plant quality at maturity, and subsequent post-production performance.

Free access

Douglas A. Hopper and P. Allen Hammer

A central composite rotatable design was used to estimate quadratic equations describing the relationship of irradiance, as measured by photosynthetic photon flux (PPF), and day (DT) and night (NT) temperatures to the growth and development of Rosa hybrida L. in controlled environments. Plants were subjected to 15 treatment combinations of the PPF, DT, and NT according to the coding of the design matrix. Day and night length were each 12 hours. Environmental factor ranges were chosen to include conditions representative of winter and spring commercial greenhouse production environments in the Midwestern United States. After an initial hard pinch, 11 plant growth characteristics were measured every 10 days and at flowering. Four plant characteristics were recorded to describe flower bud development. Response surface equations were displayed as three-dimensional plots, with DT and NT as the base axes and the plant character on the z-axis while PPF was held constant. Response surfaces illustrated the plant response to interactions of DT and NT, while comparisons between plots at different PPF showed the overall effect of PPF. Canonical analysis of all regression models revealed the stationary point and general shape of the response surface. All stationary points of the significant models were located outside the original design space, and all but one surface was a saddle shape. Both the plots and analysis showed greater stem diameter, as well as higher fresh and dry weights of stems, leaves, and flower buds to occur at flowering under combinations of low DT (≤ 17C) and low NT (≤ 14C). However, low DT and NT delayed both visible bud formation and development to flowering. Increased PPF increased overall flower stem quality by increasing stem diameter and the fresh and dry weights of all plant parts at flowering, as well as decreased time until visible bud formation and flowering. These results summarize measured development at flowering when the environment was kept constant throughout the entire plant growth cycle.

Free access

James E. Brown-Faust and Royal D. Heins

Saintpaulia ionantha `Utah' plants were grown in growth chambers at constant 15, 20, 25, and 30°C temperatures and daily photosynthetic irradiances of 1, 4, 7, and 10 mol1 m-2 day-1 delivered by 23, 92, 161, and 230 μmol m-2 s-1 for 12 hours. Models were developed describing leaf unfolding rate (LUR) and flower development rate (FDR) as a function of temperature and irradiance by recording the dates of leaf unfolding and flower opening over the course of the experiment and then calculating rates using regression. Both LUR and FDR increased as temperature increased from 15 to 25°C and then decreased. Both LUR and FDR increased as irradiance increased from 1 to 4 mol m-2 day-1. Increasing daily irradiance above 4 mol m-2 da y-1 did not significantly increase LUR or FDR. Model validation data are being collected from plants growing under 3 irradiance levels in greenhouses maintained at 15, 20, 25, and 30°C air temperatures.