Search Results

You are looking at 31 - 40 of 79 items for :

  • "iceberg lettuce" x
  • Refine by Access: All x
Clear All
Free access

K.K. Tanino, D.R. Waterer, S.R. Abrams, and L.V. Gusta

Seeds of celery, spinach, onion, cress, water cress, iceberg lettuce, Great Lakes lettuce, cabbage, tomato, sweet corn and celery were pre-treated with 0.1 μM/g seed of both ABA and analogs of ABA. The chemicals were dissolved in a mixture of methanol:hexane (9:1/v:v) and applied to the seeds for approximately 3 minutes. The solvent was removed from the seeds within 5 minutes by rotary evaporation under reduced pressure. Effects on petri plate germination and soil emergence were monitored daily at 5, 10 and 15°C. The methanol/hexane solvent alone improved spinach seed emergence at 10°C from 10% to 100% and from 50% to 90% at 15°C in celery. Certain ABA analogs reduced time to 50% emergence in celery by at least 7 days at 15°C. Two ABA analogs synchronized emergence in celery and effect was temperature-dependent. One analog improved seed germination in tomato from 15% to 90% at 10°C. In most cases treatment effects on radicle germination on petri plates was not a good indicator of treatment effects on emergence from a soil based system.

Free access

Mark Ritenour and Mikal E. Saltveit Jr.

Activity of phenylalanine ammonia-lyase (PAL) is critical in the induction of russet spotting (RS) in leaves of Iceberg lettuce (Lactuca sativa L.). RS is a major postharvest disorder of lettuce caused by exposure to ppm levels of ethylene at = 5C. Both PAL and RS are decreased when lettuce tissue previously exposed to ethylene is stored at = 15C or is transferred from = 5C to = 15C. To study the induction and inactivation of PAL, we exposed lettuce leaves to air ± 10 ppm ethylene at 5C for four days to initially induce high PAL levels. After four days, leaves were treated with water ± 2 mg/L cycloheximide, and transferred to air at 5 or 15 C. In leaves previously exposed to ethylene, PAL activity decreased rapidly to baseline levels within two days in non-cycloheximide treated leaves transferred to 15C. PAL activity remain elevated in the same treatment held at 5C. In leaves treated with cycloheximide and transferred to 15C, PAL did not begin to decrease until after four days. Cycloheximide treated leaves held at 5C showed increased PAL activity both two and four days after treatment.

Free access

T.K. Hartz and S. Breschini

High rates of N fertilization of cool-season vegetables has contributed to NO3-N pollution of groundwater in the Salinas Valley of central California. Ten field demonstrations were conducted in 1999 to document the utility of presidedress soil NO3-N testing in maximizing N fertilizer efficiency in iceberg lettuce (Lactuca sativa L.). In each demonstration, a plot 36 beds wide × the entire field length was established in a commercial lettuce field. The cooperating growers applied 1 to 3 N sidedressings in these fields. Before each sidedressing the soil NO3-N concentration in the top 30 cm of the plot was determined by an on-farm quick test technique. If NO3-N was >20 mg·kg-1, no N was applied at that sidedressing; for NO3-N <20 mg·kg-1, ≈4 kg N/ha was applied for each milligram per kilogram below the 20 mg·kg-1 threshold. Plot yields, harvested by commercial crews, were compared to the yield of adjacent areas of the field that received the growers' full sidedress N regime. Across fields, seasonal sidedress N application in the PSNT plots averaged N only at 86 kg·ha-1, almost 60% less than the average N (212 kg·ha-1) applied by the growers. Yields in the PSNT plots averaged 1824 boxes/ha, compared with 1829 boxes/ha in the companion field plots. Whole leaf N concentration at heading was above published sufficiency standards in all PSNT plots. Evaluation of heads after 10 days of storage at 5 °C showed that sidedress N application rate did not affect visual quality, decay, or midrib discoloration. We conclude that PSNT can reliably be used to minimize wasteful sidedress N applications in lettuce.

Free access

Galen Peiser, Gloria López-Gálvez, Marita Cantwell, and Mikal E. Saltveit

Russet spotting is a physiological disorder of lettuce (Lactuca sativa L.) caused by exposure to hormonal levels (<1 μL·L-1) of ethylene in air at ≈5 °C. Enhanced phenolic metabolism and the accumulation of phenolic compounds accompany the appearance of brown, oval lesions on the leaf midrib. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the phenylpropanoid pathway. Three inhibitors of PAL activity [2-aminoindan-2-phosphonic acid (AIP), α-aminooxyacetic acid (AOA), and α-aminooxi-β-phenylpropionic acid (AOPP)] greatly reduced the accumulation of phenolic compounds and browning of lesions. At a concentration of 50 μm, AIP inhibited the formation of chlorogenic and dicaffeoyl tartaric acids in cut midribs of iceberg lettuce by 92% and 98%, respectively. AIP competitively inhibited PAL activity from a lettuce midrib homogenate with an apparent Ki of 22 nm. While the formation of phenolic compounds was strongly inhibited by AIP, the number of lesions associated with russet spotting was not affected. Only the color of the lesions was affected by AIP. In control midribs the russet spotting lesions were brown while those in the AIP-treated midribs were initially olive green and after 3 to 7 days these lesions turned the characteristic brown color. No tyrosine ammonia-lyase activity was detected in a homogenate of lettuce midrib tissue. These results indicate that the early development of russet spotting lesions is independent of the increase in PAL activity and phenolic compounds rather than an effect of these increases as previously suggested. However, accumulation of phenolic compounds does contribute to the subsequent browning symptoms indicative of russet spotting.

Free access

Francisco A. Tomás-Barberán, Julio Loaiza-Velarde, Antonio Bonfanti, and Mikal E. Saltveit

The phenolic composition of whole heads and excised midrib sections of iceberg, butter leaf, and romaine lettuce (Lactuca sativa L.) was followed at 5 and 10 °C during the first 3 days after wounding or during continuous exposure to 10 μL·L-1 ethylene in air. After 3 days of storage at 5 and 10 °C, only 5-caffeoylquinic acid (chlorogenic acid), 3,5-dicaffeoylquinic acid (isochlorogenic acid), caffeoyltartaric acid, and dicaffeoyltartaric acid were detected in wounded lettuce midribs. Of these four compounds, chlorogenic acid accumulated to the highest level in all three lettuce types. The content of caffeic acid derivatives increased 3- and 6-fold after 72 hours of storage at 5 and 10 °C, respectively. The synthesis of caffeoyltartaric acid was not induced by wounding in iceberg lettuce, while chlorogenic acid increased 5-fold at 5 °C and 10-fold at 10 °C. Similar relative phenolic compositions were detected in the three lettuce types studied, although at different concentrations. Changes observed in the content of individual phenolic compounds during the first 3 days of ethylene exposure seemed to follow the same pattern observed during wound induction of the synthesis of phenolic compounds. Chlorogenic acid increased 5-fold and isochlorogenic acid increased 10-fold, while the content of caffeoyltartaric derivatives were not significantly altered by ethylene treatment. Isochlorogenic acid, which was only present in low amounts in the control, was synthesized in the later steps of wound and ethylene induction. Similar kinetics for the induction of phenolic compounds were observed in the three lettuce types studied, suggesting that the mechanisms by which wounding induces phenylpropanoid synthesis are common for the different lettuce types.

Free access

Beiquan Mou

bromide for control of corky root of iceberg lettuce Plant Dis. 74 1022 1025 Patterson, C.L. Grogan, R.G. Campbell, R.N. 1986 Economically important diseases of lettuce Plant Dis. 70 982 987 Ryder, E.J. Waycott, W. 1994 Crisphead lettuce resistant to corky

Free access

Beiquan Mou

O'Brien, R.D. van Bruggen, A.H.C. 1990 Soil fumigation with dazomet and methyl bromide for control of corky root of iceberg lettuce Plant Dis. 74 1022 1025 Patterson, C.L. Grogan, R.G. Campbell, R.N. 1986 Economically important diseases of lettuce

Free access

James D. McCreight

nymphs on L. serriola accession PI 491093 and iceberg lettuce cvs. Barcelona and Salinas in five greenhouse tests at different days postinfestation (dpi). Two subsequent tests of PI 274378 confirmed its reaction to lettuce aphid. ‘Barcelona’ was

Free access

Timothy K. Hartz, P. R. Johnstone, E. Williams, and R.F. Smith

grower quality ratings, the fields were divided into two groups: high-yield fields rated as “good” quality and low-yield fields rated as “poor” or “fair” quality. High yield was defined as greater than 2220 cartons/ha for iceberg lettuce and 2470 cartons

Open access

Gustavo F. Kreutz, Germán V. Sandoya, Gary K. England, and Wendy Mussoline

.05) is presented for soil type × genotype (LSD = 126.4). The practice of planting iceberg lettuce in Florida’s sandy soils has previously proven successful ( Cantliffe and Karchi, 1992 ; Cantliffe et al., 1997 ). However, in this research, iceberg