Search Results

You are looking at 31 - 40 of 216 items for :

  • "high-pressure sodium lamps" x
  • Refine by Access: All x
Clear All
Free access

J.E. Erwin, R. Warner, T. Smith, and R. Wagner

Viola × wittrockiana Gams. cvs `Delta Pure Rose' and `Sorbet Yellow Frost' were grown under different photoperiod and temperature treatments (12–24 ± 2°C) for different lengths of time at different stages of development during the first 6 weeks after germination. Plants were grown with ambient light (≈9 hr) at 16°C before and after treatments. Days to anthesis and leaf number were lowest when plants were grown under night interruption from 2200–0200 hr (2 μmol·m–2·s–1 from incandescent lamps) and daylight plus continuous light (100 μmol·m–2·s–1 from high-pressure sodium lamps) for `Sorbet Yellow Frost' and `Delta Pure Rose', respectively. Days to anthesis decreased as temperature increased from 12 to 24°C. Plant height and internode elongation were greatest and least in the night interruption and continuous light treatments, respectively. Branching decreased as temperature increased from 12 to 24°C. Implications of these data with respect to classification of Viola × wittrockiana flower induction and development of prefinished seedlings is discussed.

Free access

Hassan Chadjaa, Louis-Phillipe Vézina, Sylvain Dubé, and André Gosselin

Two cultivars of lamb's lettuce (Valerianella sp L. cvs. Valgros et Vit) and one cultivar of spinach (Spinacea oleracea L. cv. Martine RZ Fl) were subjected to supplemental lighting treatments provided by high-pressure sodium lamps (HPS, PL 90, P.L. Lighting Systems). The PAR level was 50 μmol m–2 · s–1. Seedlings were subjected to three photoperiods (natural, 12, and 16 h). The experiment was conducted from Jan. until Apr. 1994. The fresh weight of plants grown under supplemental light was higher than plants grown under natural light. Nitrate concentration was lower in the leaves of plants grown under supplemental light while nitrate reductase activity (NRA) was increased. The cultivar Valgros was more productive than Vit, but accumulated more nitrates. At harvest, the fresh weight of Valgros plants grown under 12- and 16-h photoperiods were 30% and 50% higher, respectively, than those grown under natural photoperiod. The fresh weight of Vit grown under 16 h of supplemental light was 30% higher than under natural photoperiod. The lowest nitrate concentrations in plants were obtained under a 16-h photoperiod and the highest NRA were obtained with the same treatment. Compared to that obtained under natural photoperiod, the fresh weight of spinach shoots was 40% higher when seedlings were lighted for 12 h and almost 100% under 16 h. The lowest nitrate accumulation in spinach was found for plants grown under 16 h supplemental lighting.

Free access

R.M. Warner, J.E. Erwin, and A.G. Smith

Previous research indicated that Raphanus sativus L. `Chinese Radish Jumbo Scarlet' (CJRS) has an obligate vernalization requirement for flowering and can be vernalized as an imbibed seed in less than 10 days at 6 °C. For these reasons, it serves as an excellent model system for vernalization studies. This study was initiated to gain an understanding of the interaction between cold duration, exogenously applied GA3, and photoperiod on R. sativus CJRS flowering. R. sativus CJRS seeds were sown in 90-mm petri plates on Whatman no. 1 filter paper saturated with plain water or a solution containing 10-5 M or 10-3 M GA3. After germination (i.e., when the radicle was visible), seedlings were either directly transplanted into 10-cm pots and placed in a greenhouse, or transferred to another petri plate onto filter paper saturated with water only and placed in a growth chamber at 6 °C (75 μmol•m-2•s-1 for 8 h) for 2, 4, 6, 8, or 10 days. Greenhouse conditions were: 20 °C, ambient light (December to January, St. Paul, Minn.) plus 70 μmol•m-2•s-1 supplemental light (high-pressure sodium lamps, 0830-1630 hr), under either an 8-h photoperiod (covered with opaque cloth from 1630-0830 hr), or ambient photoperiod plus night-interruption lighting (2 μmol•m-2•s-1, using incandescent lamps, 2200-0200 HR). Results will be presented.

Free access

Robert W. Langhans and Mauricio Salamanca

With the primary objective of assuring food safety at the production level, a HACCP (Hazard Analysis and Critical Control Point) plan was developed and implemented in an 8000-ft2 greenhouse producing 1000 heads of lettuce per day in Ithaca, N.Y. The plan was developed following the HACCP principles and application guidelines published by the National Advisory Committee on Microbiological Criteria for Foods (1997). The CEA glass greenhouse uses both artificial high-pressure sodium lamps and a shade curtain for light control. Temperature is controlled via evaporative cooling and water heating. Lettuce plants are grown in a hydroponic pond system and are harvested on day 35 from day of seeding. Known and reasonable risks from chemical, physical, and microbiological hazards were defined during the hazard analysis phase. Critical control points were identified in the maintenance of the pond water, the operation of evaporative coolers, shade curtains, and during harvesting and storage. Appropriate prerequisite programs were implemented before the HACCP plan as a baseline for achieving minimum working conditions. Proper critical limits for some potential hazards were established and monitoring programs set up to control them. Postharvest handling was setup in an adjacent head house that was adapted as a food manufacturing facility according to New York State Dept. of Agriculture and Markets standards. Potential applications will be discussed.

Free access

J. Frick and C.A. Mitchell

Due to its short time to flower (14-18 days) and rapid maturation cycle (50-55 days), dwarf rapid-cycling brassica (Brassica napus) is under consideration as a candidate oilseed crop for NASA's Controlled Ecological Life Support Systems program. Recent work has focused on defining a set of optimum environmental conditions which permit increased crop yield in terms of g·m-2d-1 of edible biomass. A wide range of environmental variables have been considered including lamp type, CO2 level, nutrient solution pH, and planting density. In addition, nitrogen nutrition regimes have been manipulated with respect to nitrogen concentration (2 to 30 mM), source (NH4 + and/or NO3 -), and time of stepwise changes in nitrogen level (day 14 to 28). The highest seed oil content (42% DW basis) has been found under limiting nitrogen levels (2 mM). However, the low nitrogen inhibits overall seed production potential. Different cultural techniques also have been compared, including solid-substrate, passive wicking hydroponics versus liquid culture systems. Trials are underway to assess crop growth and development under the “best set” scenario of environmental conditions. At present, the highest seed yield (10.6 g·m-2d-1) has been obtained using solid-substrate hydroponic systems under a combination of metal halide and high-pressure sodium lamps. Constant CO2 enrichment to 1000 μmol·mol-1 did not increase crop yield rate.

Research supported in part by NASA grant NAGW - 2329.

Free access

J.W. White, H. Chen, and D.J. Beattie

Aquilegia ×hybrida `Bluebird' and `Robin', grown as greenhouse pot plants, initiated flower buds before cold exposure (4.5C) under supplemental high-pressure sodium lamps in mid-December, 5.5 months from sowing. Low temperature was the primary environmental factor that affected floral development in `Bluebird'. As the length of the cold exposure increased, the time between appearance of visible buds, anthesis, and petal shattering decreased, as did inflorescence number and total flower number per plant. Gibberellic acid (GA3) at 100 or 200 mg·liter-1 accelerated the appearance of visible buds during forcing in treatments without cold exposure. Soil drench applications of GA3 2 weeks before cold treatment accelerated floral development more than GA3 applied after cold exposure. Inflorescence number and total flower number per plant were reduced by 4 or 8 weeks but not by 2 weeks of exposure to cold. The developmental rate of “Robin', i.e., appearance of visible buds and anthesis, was quicker in plants with 18 to 20 leaves than in those with 12 to 14 leaves.

Free access

Gregory D. Goins, Neil C. Yorio, and Lynn V. Lewis

Various electric lamp sources have been proposed for growing plants in controlled environments. Although it is desirable for any light source to provide as much photosynthetically active radiation (PAR) as possible, light spectral quality is critical in regard to plant development and morphology. Light-emitting diodes (LEDs) and microwave lamps are promising light sources that have appealing features for applications in controlled environments. Light-emitting diodes can illuminate a narrow spectrum of light, which corresponds with absorption regions of chlorophyll. The sulfur-microwave lamp uses microwave energy to excite sulfur and argon, which produces a bright, continuous broad-spectrum white light. Compared to conventional broad-spectrum sources, the microwave lamp has higher electrical efficiency, and produces limited ultraviolet and infrared radiation. Experiments were conducted with spinach to test the feasibility of using LEDs and microwave lamps for spinach production in controlled environments. Growth and development comparisons were made during 28-day growth cycles with spinach grown under LED (at various red wavelengths), microwave, cool-white fluorescent, or high-pressure sodium lamps. Plant harvests were conducted at 14, 21, and 28 days after planting. At each harvest under all broad-spectrum light sources, spinach leaf growth and photosynthetic responses were similar. Major differences were observed in terms of specific leaf area and weight between spinach plants grown under 700 and 725 nm LEDs as compared to plants grown under shorter red wavelengths.

Free access

Mark A. Rose, David J. Beattie, and John W. White

Two distinct patterns of whole-plant transpiration (WPT) were observed in `Moonlight' rose (Rosa hybrida L.) using an automated system that integrated a greenhouse climate computer, a heat-balance sap-flow gauge, an electronic lysimeter, and an infrared leaf temperature sensor. One pattern consisted of a steady rate of transpiration in a stable greenhouse environment. The second pattern consisted of large oscillations in transpiration unrelated to any monitored microclimate rhythms. These oscillations had a sine-wave pattern with periods of 50 to 90 minutes and ranged from 2 to 69 g·h-1 in natural light and 3 to 40 g·h-1 under high-pressure sodium lamps at night. Leaf-air temperature difference (T1 - Ta) also oscillated and was inversely related to transpiration rate. Oscillatory transpiration has not been reported in roses. Plant scientists need to recognize the complex and dynamic nature of plant responses such as the oscillatory pattern of WPT monitored in Rosa hybrida when selecting monitoring and control strategies.

Free access

Ryan M. Warner and John E. Erwin

Thirty-six Hibiscus L. species were grown for 20 weeks under three lighting treatments at 15, 20, or 25 ± 1.5 °C air temperature to identify flowering requirements for each species. In addition, species were subjectively evaluated to identify those species with potential ornamental significance based on flower characteristics and plant form. Lighting treatments were 9 hour ambient light (St. Paul, Minn., November to May, 45 °N), ambient light plus a night interruption using incandescent lamps (2 μmol·m-2·s-1; 2200 to 0200 hr), or ambient light plus 24-hour supplemental lighting from high-pressure sodium lamps (100 μmol·m-2·s-1). Five day-neutral, six obligate short-day, six facultative short-day, three obligate long-day, and one facultative long-day species were identified. Fifteen species did not flower. Temperature and lighting treatments interacted to affect leaf number below the first flower and/or flower diameter on some species. Hibiscus acetosella Welw. ex Hiern, H. cisplatinus St.-Hil., H. radiatus Cav., and H. trionum L. were selected as potential new commercially significant ornamental species.

Full access

In the article “Comparison of Intracanopy Light-emitting Diode Towers and Overhead High-pressure Sodium Lamps for Supplemental Lighting of Greenhouse-grown Tomatoes” by Celina Gómez, Robert C. Morrow, C. Michael Bourget, Gioia D. Massa, and Cary A