Search Results

You are looking at 31 - 40 of 701 items for :

  • Refine by Access: All x
Clear All
Free access

Michael Compton

Callus was induced from protocorms of five Paphiopedilum hybrids (Paph. 03-1, Paph. 03-4, Paph. 03-5, Paph. 03-6, and Paph. 03-7) on callus induction medium [MS inorganics (412.5 mg NH4NO3 instead of 1650 mg and 475 mg KNO3 instead of 1900 mg) and vitamins plus (per liter) 0.1 g myo-inositol, 30 g sucrose, and 2.5 g Gelrite; pH 5.5] containing various concentrations and combinations of thidiazuron (TDZ; 4.5 and 45 μm) and 2,4-D (4.5 and 45 μm). Callus formation was greatest for protocorms of Paph. 03-1, Paph. 03-4, Paph. 03-6, and Paph. 03-7. Among the most competent hybrids, callus formation was greatest among protocorms induced in medium containing 4.5 μm 2,4-D and 4.5 to 45 μm TDZ. Induced calli were transferred to 100 × 15 mm petri dishes containing 25 mL of PLB and plant regeneration medium (similar to callus induction medium) containing various concentrations of either benzyladenine (BA; 0.5, 5, or 10 μm), TDZ (0.25, 2.5, or 5 μm) or no growth regulator (control). PLB and plant formation was greatest on medium containing BA.

Free access

Kathryn Kamo, Alan Blowers, Franzine Smith, Joyce Van Eck, and Roger Lawson

More than 100 transgenic Gladiolus plants were recovered after particle bombardment of regenerable suspension cells and callus. For transformation, Gladiolus callus and suspension cells were co-bombarded with phosphinothricin acetyltransferase-(PAT) and ß- glucuronidase (GUS) -expressing plasmids. Stably transformed calli were selected on medium containing either phosphinothricin (PPT) or bialaphos followed by transfer to a regeneration medium to recover transgenic plants. Stable transformation was confirmed by detection of the PAT gene by DNA gel blot analysis and by enzymatic assays to measure GUS activity. In general, particle bombardment of regenerable suspension cells rather than callus resulted in the largest number of transformants. The rate of co-expression for GUS in PPT-resistant plants was high (≈ 70%). Promoters that are typically more efficient in dicotyledonous plants were very active in Gladiolus, a monocotyledonous bulb plant. Establishment of an efficient transformation protocol for Gladiolus will now allow the introduction of transgenes to confer resistance to the viral and fungal pathogens that decrease Gladiolus production.

Free access

Andrew S. Wang

Friable embryogenic callus of American ginseng (Panax quinquefolium L.) was induced from root pith on Murashige and Skoog medium supplemented with 2 mg 2,4-D and 1 mg KIN/liter. Optimal callus growth occurred on medium containing 1.5 mg dicamba/liter. Plants were regenerated on MS medium supplemented with various concentrations of plant growth regulators (PGRs); the best PGR combination was 0.5 mg IBA and 0.1 mg NAA/liter. Chemical names used: (2,4-dichlorophenoxy) acetic acid (2,4-D); 3,6-dichloro-o-anisenic acid (dicamba); 6-benzylaminopurine (BA); gibberellic acid (GA); indole-3-butyric acid (IBA); kinetin (KIN); and naphthaleneacetic acid (NAA).

Free access

J.M. Al-Khayri, F.H. Huang, T.E. Morelock, and H.T. Zhang

The objective of this study was to determine the efficacy of Agrobacterium tumefaciens in transforming spinach (Spinacia oleracea L.) callus. Callus was induced from leaf disks of `Baker' on Murashige and Skoog (MS) medium supplemented with 2 mg L-1 kinetin and 0.5 mg L-1 2,4-D. Callus was cut into 2-mm pieces, and 0.5 g of callus was placed in each 250-ml flask which contained 20 ml of MS liquid medium. The suspension cultures were inoculated with 100 μl of an overnight culture of A. tumefaciens harboring pMON 9749 (provided by S. Rogers, Monsanto Co., St. Louis), a plasmid cointegrated with kanamycin resistance and β -glucuronidase (GUS) genes. After coculturing for 2 days at 22C with shaking at 100 rpm, the medium was replaced with selection medium containing (in μg/ml) 75 kanamycin, 100 cefotaxime, and 200 carbenicillin and maintained for 3 weeks. Transient expression of GUS gene in transformed cells was detected with X-glu assay. This method resulted in a high level of transformation and provides the first report of transformation in spinach. This study was funded by a grant (92-B-32) from the Arkansas Science & Technology Authority.

Free access

Azza Abdel-Aziz Tawfik and P. E. Read

Regeneration from callus of rosemary has not been reported. Leaf segment, meristem-tip and shoot-tip explants of Rosmarinus officinalis were cultured on a Murashige and Skoog (MS) medium supplemented with five concentrations of the cytokinin thidiazuron (TDZ) alone or in combination with 3-indoleacetic acid (IAA). Callus was formed on the base and leaves of the shoottips after 6 weeks when cultured under cool white fluorescent light (26 u mol·S-1 m-2) on MS containing 0.5, 1.0, 1.5 or 2.0 mg/l TDZ. Calti were transferred to fresh MS medium supplemented with 0.2, 0.4, 0.6, 0.8 or 1.0 mg/l TDZ or 2.0, 4.0, 6.0 or 8.0 mg/l benzyladenine (BA) where shoot formation occurred. Essentiality of IAA was not clear from these experiments and further research is underway to refine regeneration protocol

Free access

R. Vega de Rojas and S.L. Kitto

Ovules of babaco [Carica pentagona (Heilborn) Badillo], 23 to 140 days old, were cultured to initiate regenerative callus. Callus developed from the integuments and possibly from the nucellus. Ovules of greater length and age produced more calli on White's medium or medium with half-strength MS salts than on full-strength MS. Ovules >60 days old that were chilled for 24 hours produced significantly more callus than fresh ovules <60 days old. Ovular calli of summer and fall fruits (73 to 90 days old) grown at 23 ± 2C under cool-white fluorescent lamps (16- or 18-hour photoperiod, 12 or 16 μmol·s-1·m-2) developed green areas that subsequently produced nodular structures. Nodular structures produced proembryonal structures that developed into mature somatic embryos when transferred to media containing either GA3 (0.1 mg·liter-1) plus activated charcoal (2.0 g·liter-1) or casein hydrolysate (200 mg·liter-1) plus IAA (0.5 mg·liter-1). Somatic embryos converted into plantlets when transferred to embryo conversion medium. Chemical names used: 1-H -indole-3-acetic acid (IAA); gibberellic acid (GA3).

Free access

Jameel M. Al-Khayri, Feng H. Huang, Teddy E. Morelock, and Tahani A. Busharar

A preliminary study has shown that the addition of 15% (v/v) coconut water (CW) to the culture medium significantly improved callus growth, shoot-regenerative capacity, and shoot growth in leaf disk cultures of spinach (Spinacia oleracea L.). Subsequently, the influence of a range of CW concentrations, 0%, 5%, 10%, 15%, or 20% (v/v), was examined. Callus weight obtained after 5 weeks showed direct relationship to the concentration of CW. This stimulator action was observed in both cultivars tested in this study, `High Pack' and `Baker'. On CW-containing medium, shoot regeneration was expedited to 4 to 5 weeks compared with 8 to 12 weeks on a CW-free medium. Callus of `Baker' induced on a CW-free medium exhibited a significant increase in shoot regeneration frequency when transferred to a regeneration medium enriched with CW, suggesting that the addition of CW to the regeneration medium only is sufficient to achieve improved regeneration.

Free access

Enaksha R. Wickremesinhe and Richard N. Arteca

Cephalotaxus harringtonia plants produce alkaloid compounds possessing antitumor properties, the major one being homoharringtonine. The purpose of this study was to produce roots from callus cultures developed earlier. Fast growing callus cultures were placed on MS basal salt medium with B-5 vitamins, 2% sucrose, 10 μM kinetin, 0.45 μM 2,4-D and 0.2% Gelrite. Upon subculture onto basal medium without hormones, we observed organogenesis of both shoots and roots. Roots were excised and established on basal medium without hormones. By subculturing two 2-inch root tips containing numerous visible laterals in liquid medium we were able to harvest 30 g of roots/250 ml flask after 3 weeks and 50 g/250 ml flask after 6 weeks. A 20-fold increase in fresh weight was achieved within 3 weeks when 15 grams of roots were initially seeded into a 3 liter air-sparged bioreactor. However, most of these roots appeared to be fleshy/swollen while root cultures established from half inch root tips grew slower but were normal in appearance. We arc currently in the process of establishing growth characteristics for these roots and assaying roots for the presence of these alkaloids.

Free access

Veronique Declerck and Schuyler S. Korban

Leaf segments of Prunus persica L. (peach) collected from greenhouse-grown plants and from micropropagated shoots were cultured on a basal medium containing half-strength Murashige and Skoog (MS), Staba vitamins, sucrose (30 g/1) and agar (6.5 g/l); medium adjusted to pH 5.6. The influence of 6 different growth regulators at 3 concentrations (5, 10, 15 μM) were investigated using leaf explants from proliferating shoots of 'Elberta Queen' peach. With thidiazuron (TDZ), compact and multiple green calli were obtained; with benzyladenine and zeatin, lower numbers of small sized calli were obtained; with kinetin, no callus development was observed. Among auxin treatments, both Dicamba and 2,4-D resulted in friable white and yellow calli. Most of the calli produced in all treatments were formed along the cut margins of the explants. In an another experiment, leaf explants of' Bellaire' (greenhouse) and `Elberta Queen' (in vitro shoots) were used to determine the influence of a large scale concentration of TDZ (3 to 23 |iM). Explants from greenhouse and in vitro leaves resulted in higher levels of callus development at TDZ concentrations of 8-13 μM. Higher TDZ levels resulted in necrosis of leaf explants. The-influence of different carbon sources on callogenesis was investigated. We observed more green and compact calli with glucose than with sucrose and fructose at 100 mM. The influence of the glucose at 10 different concentrations (30 to 300 mM) was also investigated.

Free access

N.J. Gawel, C.D. Robacker, and W.L. Corley

Immature inflorescences of Miscanthus sinensis Andress. `Gracillimus', `Variegatus', and `Zebrinus' were cultured on modified MS medium with 9.0 μm 2,4-D, 20 g sucrose/liter, 2.0 g Gelrite/liter, and 0.75 g MgCl2/liter. Organogenesis was observed 8 to 12 weeks after callus initiation. Shoots were rooted on half-strength MS medium without growth regulators. After rooting, tillers were initiated. When transferred to soil, plants matured to flowering quickly and retained their variegation patterns. Propagation through in vitro tillering is suggested. Chemical name used: 2,4-dichlorophenoxyacetic acid (2,4-D).