Search Results

You are looking at 31 - 40 of 1,023 items for :

  • "Lycopersicon esculentum" x
  • Refine by Access: All x
Clear All
Free access

Monica Ozores-Hampton and Brain Mardones

Intensive peat mining in Chile and worldwide produces a significant increase in production costs and less market availability. Alternative systems to promote peat mining sustainability are an immediate necessity. A viable alternative for replacing peat in tomato transplant production is to use worm castings or vermicompost. Vermicomposting is a biological process that relies on the action of earthworms (Eisenia sp.) to stabilize waste organic materials. The objective of this study was to evaluate the use of Ecobol-S® worm castings as a replacement for peat in tomato transplant production. Three experiments were designed using a randomized complete-block design containing two factors (planting date and worm casting rate). Tomatoes were seeded in a growth chamber using five growth media made up of the different ratios of worm castings, peat, and rice hulls [0:70:30 (control) 18:52:30; 35:35:30; 52:18:30; and 70:0:30], respectively. It was determined that Ecobol-S® worm castings have an adequate C:N and particle size for tomato transplant production. However, limitations were observed due to its high EC and low C content. During early fall, with high temperature in the growth chamber, it is not recommended to use worm castings in transplant production due to nutrient leaching caused by frequent irrigation. In mid-fall, it is recommended to use a rate of 35% worm castings, while in early winter it is recommended to use a rate of 52% to obtain strong and healthy transplants. Therefore, worm castings can be used as a viable alternative in the tomato transplant industry in Chile and possibly worldwide.

Free access

Eileen Kabelka, Wencai Yang, and David M. Francis

An inbred backcross (IBC) population derived from Lycopersicon hirsutum LA407 and L. esculentum was evaluated in replicated field trials to assess its potential for the improvement of red-fruited tomatoes. Significant phenotypic variation among genotypes was detected for the hue (tint), L (darkness), and chroma (saturation) of color. Significant effects due to environment and genotype × environment interactions also were observed. One superior inbred backcross line from this population, IBL 2349, was used to develop an F2 population and to explore the genetic basis of color. Two independent L. esculentum quantitative trait loci (QTL) associated with improved color were identified based on linkage to markers mapping to chromosome 4 and chromosome 11. Epistatic interactions were identified between the two L. esculentum loci. Unexpected epistatic interactions also were identified between L. esculentum loci and an LA407 introgression on chromosome 7 present within IBL 2349. The two L. esculentum QTL and the epistatic interactions were confirmed in replicated trials with F3 and F4 families. The loci identified in this study and their epistatic interactions may provide additional tools for the improvement of red-fruited tomatoes in breeding programs.

Full access

Brian A. Kahn and John P. Damicone

Drip-irrigated, stake-and-weave supported tomato (Lycopersicon esculentum) plots were established in 2005 and 2006. All plots (except controls) were treated with a kaolin particle film product (Surround WP) mixed at 0.5 lb/gal of water and applied with a pressurized hand sprayer. Sprays began after transplanting and were repeated as needed to maintain a particle film on the foliage. Sprays were discontinued either at anthesis, at first green fruit 5 cm in diameter, or at first colored fruit harvest. Multiple hand harvests were made as fruit matured. In 2005, all kaolin treatments reduced marketable fruit number and weight, whereas in 2006 there were no significant effects. Cull fruit weight and average weight per marketable fruit were unaffected by treatments during either year. Results indicate that when applied before harvest begins, Surround may not improve marketable yields of fresh tomatoes.

Free access

L. Botrini, A. Graifenberg, and M. Lipucci di Paola

The tomato cultivars Edkawi and UC 82B (Lycopersicon esculentum Mill.) were grown hydroponically in a solution [electrical conductivity (EC) 2.4 dS·m-1] containing 150 mm Na (EC 11.4 dS·m-1), 37 mm of K (EC 14.1 dS·m-1), or 75 mm of K (EC 19.7 dS·m-1). The leaf Na content of `Edkawi' and `UC 82B' reached values of 1717 and 2022 mmol·kg-1 dry weight at EC 19.7 dS·m-1, respectively. The high levels of K in the hydroponic solution reduced the Na concentration in the roots, petioles, and stems, but not in the leaves. Potassium concentrations in the petioles of `Edkawi' and `UC 82 B' reached values of 2655 and 2966 mmol·kg-1 dry weight, respectively. At these elevated ECs, the Ca concentrations in the leaves of `Edkawi' and `UC 82B' were 30% and 40% lower than in the control, respectively. The elevated rates of K improved the fruit: flower ratio of `UC 82B', but the high salinity of the solution reduced yields significantly. Plant fresh weight and root dry weight of `UC 82B' were most affected by high EC levels. The elevated levels of K used in this study did not increase yield, but K ions can adjust to Na uptake.

Free access

Georgina D. Arthur, Adeyemi O. Aremu, Manoj G. Kulkarni, and Johannes Van Staden

photosynthetic pigment contents were evaluated. Materials and Methods The experiments were conducted using commercial seeds of tomato ( Lycopersicon esculentum Mill. ‘Heinz-1370’) purchased from McDonald’s Seed Company, Pietermaritzburg, South Africa. VCL was

Full access

Timothy Coolong, Susmitha Surendran, and Richard Warner

tensions to determine the limit for setpoints for tomato grown in a plasticulture system on a silt loam soil. Literature cited Amayreh, J. Al-Abed, N. 2005 Developing crop coefficients for field-grown tomato ( Lycopersicon esculentum Mill.) under drip

Free access

H.Y. Hanna

A study was conducted in Summer 1996 and 1997 to determine the residual effects of planting nematode-resistant vs. susceptible tomato (Lycopersicon esculentum Mill.) cultivars and use of white vs. black polyethylene mulch on the growth and yield of a subsequent muskmelon (Cucumis melo L.) crop. Tomato cultivars were planted in early April and harvested in June and early July. Muskmelons were planted in late July on the same beds. Muskmelons, planted after the nematode-resistant tomato cultivar Celebrity, produced significantly greater marketable yield and more fruit per hectare in both years than did muskmelons planted after the nematode-susceptible tomato cultivar Heatwave. Plant dry weight of muskmelons was greater and the percentage of their galled roots was smaller when planted after nematode-resistant tomatoes than when planted after nematode-susceptible ones. Mulching tomatoes with black or white polyethylene had no significant effect on growth, yield, and root galling of subsequent muskmelon crops.

Free access

S.J. Locascio, G.J. Hochmuth, S.M. Olson, R.C. Hochmuth, A.A. Csizinszky, and K.D. Shuler

Tomato (Lycopersicon esculentum Mill.) was grown with polyethylene mulch at five locations during a total of nine seasons to evaluate the effects of K source and K rate on fruit yield and leaf K concentration with drip and subsurface irrigation. K sources evaluated were KCl, K2SO4, and KNO3, and K rates varied from 0 to 400 kg·ha-1. Preplant soil K concentrations by Mehlich-1 extraction on the sandy soils and loamy sands used in the study varied from 12 mg·kg-1 (very low) to 60 mg·kg-1 (medium). In seven of the eight studies, K source did not significantly influence fruit yield or leaf K concentration. In the other study with subsurface irrigation at Bradenton in Spring 1992, marketable yields were significantly higher with KNO3 than with KCl as the K source. Tomato fruit yield responded to the application of K in all studies. At Gainesville, Quincy, and Live Oak, with drip irrigation on soils testing low to medium in K, maximum yields were produced with 75 to 150 kg·ha-1 K where the K was broadcast preplant. These rates were 25% to 30% higher than those predicted by soil test. At Bradenton and West Palm Beach on soils testing low to very low in K, where all or part of the K was applied in double bands on the bed shoulder with subsurface irrigation, yield responses were obtained to 225 to 300 kg·ha-1 K. These rates exceeded the maximum recommended K rate of 150 kg·ha-1. Tomato leaf tissue K concentrations increased linearly with increased rates of K application, but were not influenced by K source. These data suggest that the recommendation for K on soils testing low in K be increased from 150 to 210 kg·ha-1 and that this increase should suffice for tomatoes grown with either drip or subsurface irrigation.

Free access

John W. Scott

Mutchler, M.A. Tanksley, S.D. Rick, C.M. 1987 1987 linkage maps of the tomato ( Lycopersicon esculentum ) Rept. Tomato Genet. Coop. 37 5 34 Peace, C.P. Norelli, J. 2009 Genomics approaches to

Free access

E.W. Stover, P.J. Stoffella, S.A. Garrison, D.I. Leskovar, D.C. Sanders, and C.S. Vavrina

A commercial mixture of 1-naphthaleneacetamide and 1-naphthaleneacetic acid (Amcotone) was applied to tomato (Lycopersicon esculentum Mill.) and pepper (Capsicum annuum L.) at various timings from early bloom through early fruit development to evaluate effects on fruit size and both early and total marketable yield. Amcotone was applied at rates from 10 to 40 mg·L-1, at three sites for each of the species studied. Measured yield response variables in tomato did not differ between the control and Amcotone treatments, regardless of location. Amcotone treatments did not affect yields or fruit size for pepper at the New Jersey or Texas sites. However, at Ft. Pierce, Fla., early marketable yield of pepper was increased in plots receiving three Amcotone applications at 10 mg·L-1, but total marketable yield was significantly reduced in all plots receiving more than two Amcotone sprays, and mean fruit weight was reduced by all Amcotone treatments. Early and total marketable yield of pepper at Ft. Pierce were markedly reduced in plots receiving four applications of 40 mg·L-1, which was a high rate used to assess potential phytotoxicity. While minimal benefit from auxin application was observed in this study, earlier studies suggest that these results may have been influenced by favorable environmental conditions for fruit development or negative effects on unopened flowers during all Amcotone spray applications.