Search Results

You are looking at 21 - 30 of 338 items for :

  • reproductive organs x
  • Refine by Access: All x
Clear All
Free access

Petra Wolters, Wanda Collins, and J.W. Moyer

The establishment of a sweet potato repository in Georgia that will eventually accept and distribute true seed of sweet potato [Ipomoea batatas (L.) Lam.] raised the question of seed transmission of viruses, especially of sweet potato feathery mottle virus (SPFMV). Seedlings obtained from virus-infected parent plants were free of viral infection. Examination of virus distribution in virus-infected plants determined that SPFMV was present in vegetative tissue, but not in reproductive organs, indicating that the probability of SPFMV transmission in sweet potato through seed is very low.

Free access

Y.H. Huang, C.E. Johnson, and M.D. Sundberg

Floral morphology and differentiation of `Sharpblue' southern highbush blueberry (Vaccinium corymbosum L.) were studied under natural growing conditions. There was no rest period during floral development of `Sharpblue' blueberry in Louisiana. Basal florets were already present within a racemic inflorescence in early September. All floral and reproductive organs were clearly visible in early December. Microspores and pollen grains were observed in mid- and late-January, respectively. Megasporocytes, two-cell, four-cell, and seven-cell embryo sacs were found to be simultaneously present in developing ovules in late January, suggesting that megasporogenesis and megagametogenesis in `Sharpblue' blueberry are asynchronous.

Free access

Katy M. Rainey and Phillip D. Griffiths

The genetic basis for heat tolerance during reproductive development in snap bean was investigated in a heat-tolerant × heat-sensitive common bean cross. Parental, F1, F2, and backcross generations of a cross between the heat-tolerant snap bean breeding line `Cornell 503' and the heat-sensitive wax bean cultivar Majestic were grown in a high-temperature controlled environment (32 °C day/28 °C night), initiated prior to anthesis and continued through plant senescence. During flowering, individual plants of all generations were visually rated and scored for extent of abscission of reproductive organs. The distribution of abscission scores in segregating generations (F2 and backcrosses) indicated that a high rate of abscission in response to heat stress was controlled by a single recessive gene from `Majestic'. Abscission of reproductive organs is the primary determinant of yield under heat stress in many annual grain legumes; this is the first known report of single gene control of this reaction in common bean or similar legumes. Generation means analysis indicated that genetic variation among generations for pod number under heat stress was best explained by a six-parameter model that includes nonallelic interaction terms, perhaps the result of the hypothetical abscission gene interacting with other genes for pod number in the populations. A simple additive/dominance model accounted for genetic variance for seeds per pod. Dominance [h] and epistatic dominance × dominance [l] genetic parameters for yield components under high temperatures were the largest in magnitude. Results suggest `Cornell 503' can improve heat tolerance in sensitive cultivars, and heat tolerance in common bean may be influenced by major genes.

Free access

Keith T. Birkhold and Rebecca L. Darnell

The relative contribution of storage and currently assimilated N to reproductive and vegetative growth of `Bonita' and `Climax' rabbiteye blueberry (Vaccinium ashei Reade) was estimated immediately before and during the fruit development period. Total and storage N decreased in roots and shoots of both cultivars during dormancy and early fruit development. The principle N storage form appeared to be protein, as indicated by a significant decline in total shoot and root protein during this same period. Storage N from roots and shoots in both cultivars was remobilized to flowers and/or fruit and new vegetative growth. At anthesis, 90% of the total N present in reproductive organs was estimated to come from storage N. By fruit maturity, ≈ 50% of the accumulated N was derived from storage pools. Storage N contributed 90% of the total N in developing vegetative growth of `Bonita' at leaf budbreak, which is concomitant with floral budbreak for this cultivar. Developing vegetative growth of `Climax' at leaf budbreak, which occurs ≈ 4 weeks after floral budbreak, derived ≈ 65% of its total N from storage and 35% from currently assimilated N. By fruit maturity, contribution of storage N to new vegetative growth had decreased to ≈ 20% in both cultivars, indicating that currently assimilated N became the principal N supply as vegetative growth became more established. Differences in timing of floral and vegetative budbreak between the two cultivars did not appear to affect allocation of either storage or currently assimilated N to new vegetative or reproductive growth.

Free access

Faye M. Rosin and David Hannapel

MADS-box genes are an important family of highly conserved regulatory genes in plants, animals, and yeast. Genetic analyses have shown that plant MADS-box genes are homeotic and control both the spatial and temporal location of specific organs. While MADS-box genes have been extensively studied and characterized in floral organ development, their involvement in other developmental processes, such as fruit development, is not well understood. From a strawberry fruit cDNA library, we have identified a strawberry AGAMOUS-like MADS-box gene (SAG1) that is expressed in developing fruit, but not in leaves. This is the first MADS-box gene to be isolated from strawberry. The hypothesis guiding this research is that SAG1 plays an important role in the development of the fruit. Nucleotide sequence analysis showed that this cDNA had the highest sequence match to genes from the AGAMOUS family. Comparison of amino acid sequence similarity between SAG1 and members of this family ranged from 70 to 75% overall, and between 98% to100% within the MADS-box. Involvement in stamen and carpel identity is one function of this family of MADS-box genes. Northern hybridizations were performed in order to analyze the expression of this gene at the RNA level. RNA was extracted from various organs of Fragaria ×ananassa, c.v. Calypso. SAG1 RNA expression was specific to stamens, carpels and all stages of fruit and seed development. No expression was detected in roots, leaves, or sepals. Thus, we conclude that SAG1 RNA is involved in reproductive organ and fruit development.

Free access

Mosbah M. Kushad, Andrea R. Orvos, and George Yelenosky

Several stages of citrus (Citrus sinensis L. Osbeck. cv. Valencia) flowers, from very small bud (stage 1) to anthesis (stage 6), were evaluated for free and conjugated polyamines. The concentration of putrescine and spermidine synthesis increased markedly during the early stages, and then declined as the flower buds grew. At anthesis, putrescine and spermidine concentrations had increased significantly. Spermine concentration was very low and showed no significant change during the first three floral developmental stages; however, by stages 5 and 6, spermine concentration showed a slight but significant increase. Eighty percent of the total polyamine content in fully developed flowers is localized in the reproductive organs and only 20% is localized in the petals and the calyx. This study relates changes in conjugated and free polyamines to citrus flower growth.

Free access

Masaki Yahata, Seiichi Harusaki, Haruki Komatsu, Kayo Takami, Hisato Kunitake, Tsutomu Yabuya, Kensuke Yamashita, and Pichit Toolapong

The morphological characteristics and reproductive potential of a haploid plant obtained from the cross between `Banpeiyu' pummelo (Citrus grandis) and `Ruby Red' grapefruit (C. paradisi Macf.) were investigated. The haploid was confirmed to be derived from female gamete of `Banpeiyu' pummelo by isozyme and random amplified polymorphic DNA (RAPD) analysis. Flow cytometry analysis revealed that the haploidy was maintained in several tissues and organs of this plant. It also had the typical morphology of a haploid, such as small leaves and flowers, and had slightly fertile pollen grains. Furthermore, diploid progenies were obtained from the cross between `Kiyomi' tangor and the haploid. The hybridity of these seedlings was confirmed by assessment of the leaf characteristics and RAPD analysis. These results suggest that this haploid produced fertile unreduced pollen grains (n = 9).

Free access

Nobuhiro Kotoda, Masato Wada, Sadao Komori, Shin-ichiro Kidou, Kazuyuki Abe, Tetsuo Masuda, and Junichi Soejima

Two apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] homologous fragments of FLO/LFY and SQUA/AP1 (AFL and MdAP1, respectively) were analyzed to determine the relationship between floral bud formation and floral gene expression in `Jonathan' apple. The AFL gene was expressed in reproductive and vegetative organs. By contrast, the MdAP1 gene, identified as MdMADS5, which is classified into the AP1 group, was expressed specifically in sepals concurrent with sepal formation. Based on these results, AFL may be involved in floral induction to a greater degree than MdAP1 since AFL transcription increased ≈2 months earlier than MdAP1. Characterization of AFL and MdAP1 should advance the understanding of the processes of floral initiation and flower development in woody plants, especially in fruit trees like apple.

Free access

Denise Duclos and Thomas Björkman

The genetic factors that control reproductive development in B. oleracea remain a mystery. Broccoli differs from cauliflower in its floral development stage at harvest. We are studying the role of meristem identity genes (MIGs) in the transition from inflorescence meristem (cauliflower) to floral buds (broccoli). The objectives are to determine stage-specific roles of MIGs during reproductive development and to check whether expression of flowering genes in heading B. oleracea is as predicted by the Arabidopsis flowering model. We tested a model of arrest in B. oleracea that incorporates FUL, a redundant gene of AP1 in controlling inflorescence architecture and floral meristem identity, the meristem gene TFL1, the flowering gene LFY, and AP1/CAL, and genes involved in flower transition. Conclusions. 1) Arrest at the inflorescence meristem stage is highly correlated with a decrease in LFY to TFL1 ratio, given by a decrease in TFL1 expression. 2) Transcription of AP1c is stimulated at the time of floral primordium initiation, suggesting a role in floral transition but not in floral organ specification. Plants recessive for AP1a, AP1c, and CAL formed normal floral buds containing all four whorls of organs, and did not necessarily form curd. We suggest that their ability to flower could be related with the ectopic expression of FUL by affecting TFL1 expression. FUL paralogs were highly expressed at all stages of development of the triple mutant plants. 3) The lack of upregulation in AP1 transcripts at the floral bud stage, and the absence of an A-function mutant phenotype imply that other genes act redundantly with AP1 in the specification of sepal identity and questions the role of AP1a and AP1c as A-function genes in B. oleracea.

Free access

Chitose Honsho, Keizo Yonemori, Akira Sugiura, Songpol Somsri, and Suranant Subhadrabandhu

Flower bud differentiation and the flowering habit of durian (Durio zibethinus Murray) `Mon Thong' from budbreak to anthesis were investigated at the Chantaburi Horticultural Research Center in Thailand. Clusters of flower buds appeared at the end of November on primary or secondary scaffold branches near where a flower cluster occurred the previous year. Anatomical observations revealed that the development of floral organs was acropetal; the five fused epicalyx forming a large, elongated envelope enclosing the sepals, petals, stamen and fused multi-carpellate pistil. Floral organ development was completed in early January. The mature flower bud more than doubled in size one day before anthesis, with anthesis starting around 1600 hr and ending ≈1900 hr. The anthers did not dehisce until the completion of flowering. This change induced heterostyly in this cultivar, which promoted out-crossing by reducing the possibility of self-pollination. Aromatic nectar that attracted insects to the flower was secreted during anthesis. This is the first report to have clarified the overall flowering process in durian and provides the basic information for elucidating reproductive biology of durian in future research.