Search Results

You are looking at 21 - 30 of 93 items for :

  • S-metolachlor x
  • Refine by Access: All x
Clear All
Free access

Jeffrey F. Derr

This material is based on work supported by the Cooperative State Research Service, U.S. Dept. of Agriculture, under Project 6129900. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal

Free access

Peter A. Dotray and Cynthia B. McKenney

Experiments were conducted to evaluate established and seeded buffalograss [Buchloe dactyloides (Nutt.) Engelm.] tolerance to herbicides applied preemergence at labeled use rates. Established buffalograss tolerated benefin, benefin plus oryzalin, benefin plus trifluralin, DCPA, dithiopyr, isoxaben, oryzalin, pendimethalin, and prodiamine. For established buffalograss treated with atrazine, diuron, or metolachlor, the injury rating was 27% to 71% at 6 weeks after treatment (WAT) and 22% to 84% at 15 WAT. Buffalograss tolerated cyanazine, metsulfuron, propazine, and pyrithiobac applied in the seedbed. Seeded buffalograss stands were reduced by alachlor, atrazine, dicamba, linuron, metolachlor, metribuzin, oryzalin, pendimethalin, and quinclorac. Stand reductions by dicamba (a preplant and postemergence herbicide), up to 100% at 4 WAT and up to 85% at 16 WAT, were those most severe. Seeded and established buffalograss showed excellent tolerance to a few preemergence herbicides that could be used effectively and safely to control weeds during establishment and maintenance of buffalograss. Chemical names used: 2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl) acetamide (alachlor); 6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine (atrazine); N-butyl-N-ethyl-2,6-dinitro-4-(trifluoromethyl)benzenamine (benefin); 2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropanenitrile (cyanazine); dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate (DCPA); 3,6-dichloro-2-methoxybenzoic acid (dicamba); S,S-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridinedicarbothioate (dithiopyr); N′-(3,4-dichlorophenyl)-N,N-dimethylurea (diuron); N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide (isoxaben); N′-(3,4-dichlorophenyl)-N-methoxy-N-methylurea (linuron); 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide (metolachlor); 4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one (metribuzin); 2-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]amino]sulfonyl]benzoic acid (metsulfuron); 4-(dipropylamino)-3,5-dinitrobenzenesulfonamide (oryzalin); N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin); N 3,N 3-di-n-propyl-2,4-dinitro-6-(trifluoromethyl)-m-phenylenediamine (prodiamine); 6-chloro-N,N′-bis(1-methylethyl)-1,3,5-triazine-2,4-diamine (propazine); 2-chloro-6-[(4,6-dimethoxy-2-pyrimidinyl) thio]benzoic acid (pyrithiobac); 3,7-dichloro-8-quinolinecarboxylic acid (quinclorac); Team™ [premix of 1.33% benefin and 0.67% 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)benzenamine] (trifluralin).

Free access

C.C. Shock, E.B.G. Feibert, L.D. Saunders, and S.R. James

`Umatilla Russet' and `Russet Legend', two newly released potato (Solanum tuberosum L.) cultivars were compared with four established cultivars (`Russet Burbank', `Shepody', `Frontier Russet', and `Ranger Russet'). Potatoes were grown under four, season-long, sprinkler irrigation treatments in three successive years (1992-94) on silt loam soil in eastern Oregon. At each irrigation, the full irrigation treatment received up to the accumulated evapotranspiration (ETc) since the last irrigation. Three deficit irrigation treatments had progressively less water. The new cultivars `Umatilla Russet' and `Russet Legend' performed as well as or better than the other cultivars in the full irrigation treatment, with `Umatilla Russet' showing a higher yield potential at the higher water application rates than `Russet Legend'. All cultivars produced more U.S. No. 1 tubers than `Russet Burbank', except in 1993, an unusually cool and wet year. `Russet Legend' was the only cultivar showing a tolerance to deficit irrigation. In two out of the three years, `Russet Legend' was as productive of U.S. No. 1 yield over most of the range of applied water as `Shepody', `Frontier Russet', and `Ranger Russet' were at the higher end of the applied water range. Chemical names used: 0,0-diethyl S-[(ethylthio) methyl] phosphorodithioate (phorate); N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin); and 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1methyl-ethyl) acetamide (metolachlor).

Free access

David Staats, James Klett, Teri Howlett, and Matt Rogoyski

During the 2005 season, three preemergence herbicides were applied to four container-grown herbaceous perennials and evaluated for weed control, phytotoxicity, and effect on plant growth. The herbicides and application rates were: 1) Pendimethalin (Pendulum 2G) 2.24, 4.48, and 8.96 kg/ha; 2) Trifluralin and Isoxaben (Snapshot 2.5 TG) 2.8, 5.6, and 11.2 kg/ha; and 3) S-metolachlor (Pennant Magnum 7.6 EC) 2.8, 5.6, and 11.2 kg/ha. Herbicides were applied to Coral Bells (Heuchera sanguinea), Hopflower Oregano (Origanum libanoticum), CORONADO™ Hyssop (Agastache aurantiaca), and SPANISH PEAKS™ Foxglove (Digitalis thapsi). Treatments were applied twice with 30 days between applications. Plants were evaluated for phytotoxicity after 1, 2, and 4 weeks after applying herbicide treatments. No phytotoxicity symptoms were apparent on any of the plants treated with Pendulum, and plant size (dry mass) was not affected. Snapshot resulted in visual phytotoxicity with Digitalis and Heuchera at the higher rates and also resulted in smaller plants. Pennant Magnum caused phytotoxicity at all rates in all plants and resulted in significantly smaller plants than the control. Weed control was very good with all herbicides, but did not control every weed.

Free access

Jayesh B. Samtani, John B. Masiunas, and James E. Appleby

[ Glycine max (L.) Merr.] planting or postemergence applications of glyphosate. Based on these observations, we theorized that leaf tatters was caused by drift from herbicide applications before or at corn planting. Atrazine, glyphosate, s-metolachlor

Free access

Steven M. McCulloch and Jeffrey L. Britt

therefore must be hereby marked advertisement solely to indicate this fact. Chemical names used: metolachlor (Pennant) 2-chloro- N -(2-ethyl-6-methylphenyl)- N -(2-methoxy-1-methylethyl)acetamide (Ciba Geigy, Greensboro, N.C.); oxyfluoren + pendimethalin

Free access

Sarah R. Sikkema, Nader Soltani, Peter H. Sikkema, and Darren E. Robinson

, there are only three registered soil-applied herbicides for annual grass control: dimethenamid, EPTC and S -metolachlor ( Ontario Ministry of Agriculture, Food, and Rural Affairs, 2006 ). The registration of pyroxasulfone would provide Ontario sweet

Open access

Debalina Saha, S. Christopher Marble, Brian Pearson, Héctor Pérez, Gregory MacDonald, and D. Calvin Odero

common mulch, such as PB or PS, has been shown to reduce runoff and leaching of preemergence herbicides, including pendimethalin, metolachlor, and isoxaben, by 35% to 74% in the landscape compared with application of these herbicides to bare soil ( Knight

Open access

Giovanni A. Caputo, Phillip A. Wadl, Lambert McCarty, Jeff Adelberg, Katherine M. Jennings, and Matthew Cutulle

influences detection of Annual Bluegrass resistance to mitotic-inhibiting herbicides Crop Sci. 49 1088 1095 Cutulle, M.A. Campbell, H.T. Farfan, M. Wadl, P.A. 2020 A hydroponics assay distinguishes between S -metolachlor-tolerant and -sensitive sweetpotato

Free access

Martin M. Williams II, Carl A. Bradley, Stephen O. Duke, Jude E. Maul, and Krishna N. Reddy

using a preemergence application of s -metolachlor {2-chloro- N -(2-ethyl-6-methylphenyl)- N -[(1 S )-2-methoxy-1-methylethyl]acetamide} + atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) and weekly hand weeding. Any sign of drought