Search Results

You are looking at 21 - 30 of 1,295 items for :

  • "tissue culture" x
  • Refine by Access: All x
Clear All
Free access

Lurline Marsh and Moshen Dkhill

Tissue culture of four cowpea (Vigna unguiculata) and two pigeonpea (Cajanus cajan) genotypes was tested on Blaydes' medium supplemented with different hormone concentrations. Explants of cotyledonary nodes, cotyledons and leaves of the cowpea genotype IT82E-16, IT64E-124, Pinkeye Purple Hull and MN13 produced callus after 4 weeks in Blaydes' medium. The hormone combinations in the medium were 2-l dichlorophenoxy acetic acid (2.4-D) (2 mg/liter) and kinetin at 0.05, 0.1, 0.5 mg/liter, or 2,4-D and thidiazuron (TDZ) at 2.2, 4.4 and 6.6 mg/liter or benzylaminopurine (BA) at 2.25, 4.5 or 6.75 mg/liter. Shoots occured on cotyledonary nodes of Pinkeye Purple Hull In the TDZ (6.6 mg/liter). Roots were produced from the leaf and cotyledonary nodes of Pinkeye Purple Hull and on cotyledons of IT-64E-124 cultured In media with kinetin (0.5 mg/liter). Leaf and cotyledon explants of pigeonpea genotype; ICPL 146 1965HK and ICPL 65024 produced callus and some shoots in BA (2.25 mg/liter) after 4 weeks. The callus when subcultured on BA (0.5 mg/liter) and NAA (0.1 mg/liter) produced shoots. Regenerated shoots rooted in the Blaydes' medium with kinetin (0.01 mg/liter) and NAA (0.6 mg/liter).

Free access

Chiwon W. Lee, Joel T. Nichols, Lijuan Wang, and Shanqiang Ke

Excised leaf sections of lance coreopsis cultured on Murashige Skoog (MS) medium produced adventitious shoots in response to BA. When the combinations of 0, 0.5, 1, or 2 μm NAA with 0, 5, 10, 20, or 40 μm BA were tested, shoots were induced by any of the four BA concentrations used in the medium, regardless of the presence of NAA. The average number of shoots formed per leaf section ranged from 1.4 to 4.3 seven weeks after culture initiation. Roots were induced at the base of individual shoots on the same regeneration medium when cultures were kept longer than 7 weeks. The rooted plants were transferred successfully into soil. The regenerated plants had the same growth and flowering characteristics as the seed-grown plants. Chemical names used: benzyladenine (BA); naphthaleneacetic acid (NAA).

Free access

Lurline Marsh

108 POSTER SESSION (Abstr. 362–374) Cell and Tissue Culture I

Free access

Xingping Zhang and Billy B. Rhodes

Tetraploids are needed to synthesize triploid watermelons, which produce “seedless” fruit with improved quality. Traditionally, the tetraploids are induced by applying colchicine to the growing apex of seedlings or soaking the seeds with colchicine solution. This method often produces low frequency of tetraploids and high frequency of chimeras. Breeding tetraploids takes much longer time than breeding diploids because of the low female fertility. We developed a tissue culture approach that allows breeders to develop desirable tetraploids with commercially acceptable volume of seed in 2 years. This tissue culture approach includes: 1) regenerate plants via shoot organogenesis from cotyledon tissue; 2) screen tetraploids based on leaf morphology (more serrated leaf margin and wider leaf shape) before transplanting, and confirm tetraploids based on pollen morphology (larger pollen with four copi) and/or seed characteristics; 3) self-pollinate tetraploids or cross the tetraploids with diploids to accurately estimate the female fertility; 4) micropropagate the best tetraploid(s) using axillary buds during the off-season; and 5) produce tetraploid seed from the cloned tetraploids in an isolation plot and evaluate the triploids derived from the tetraploid(s) in the following season. This approach has been practiced on more than 20 genotypes over the past 4 years.

Free access

Mustapha Benmousea and Yves Desjardine

We have developed tissue culture and protoplasts isolation protocols for Asparagus densiflorus in order to use this genetic material in the breeding of Asparagus officinalis. For tissue-culture of A. densiflorus, the conditions which optimize the induction and the production of callus are a full MS medium with 1 mg/L of both pCPA and BAP and 0.5 mg/L of thiamine. HCL in the dark. on this medium, we obtained a friable white callus. Indirect organogenesis was obtained if pCPA was omitted from the medium. Replacement of the plant growth regulators by 2,4-D and Kinetin produced a hard and compact callus which did not differentiate. Protoplast have been isolated from 10 days old friable callus. cell wall was digested with 0.3% macerase, 1% cellulase and 0.8% rhozyme for a period of 16h at a temperature of 27°C in a CPW medium. Protoplast yield was 2 ×106 protoplasts/g callus. osmolarity of the digestion solution was 0.8 M provided with a mixture of glucose (0.6 M) and mannitol (0.2 M). cells were then plated at a density of 1 × 105 cells per ml. Microcolonies formed on a 1/2 MS medium with 0,5 mg/L NAA and ZEA and 1 g/L glutamine in the dark.

Free access

Janet E.A. Seabrook and Gerald Farrell

Stock plants of `Shepody' and `Yukon Gold' potato (Solarium tuberosum L.) were grown in a greenhouse and irrigated with city water. Contamination rate of stem explant tissue cultures excised from these stock plants was 50% to 100%. A comparison of the microorganisms isolated from the contaminated cultures and from 0.22-μm filter disks through which 20 liters of city water had passed revealed the presence of similar bacterial floras. Five genera of bacteria (Listerium spp., Corynebacterium spp., Enterobacter spp., Pasteurella spp., and Actinobacillus spp.) were isolated from contaminated cultures and cultured filter disks. Watering greenhouse-grown stock plants with filtered city water decreased contamination of stem explant cultures 30% to 50%. Installing an ultraviolet light water-sterilizing unit at the greenhouse inlet point effectively reduced contamination.

Open access

Sameer Pokhrel, Bo Meyering, Kim D. Bowman, and Ute Albrecht

for seed propagation ( Bisi et al., 2020 ). For these reasons, it is valuable to also make use of alternative propagation methods such as cuttings and tissue culture to produce genetically identical rootstocks that can be used as liners for grafting

Full access

Brent Tisserat

The influence of the culture chamber size and medium volume on the growth rates of shoot tips of peas, lettuce, kidney beans, and spearmint were determined after 8 weeks of incubation. Cultures were grown in a variety of culture chambers including culture tubes, baby food jars, Magenta GA-7 containers, 1-pint Mason jars, 1-quart Mason jars used with and without an automated plant culture system (APCS), 0.5-gal Mason jars with and without an APCS, Bio-safe chambers with an APCS, and polycarbonate culture chambers with an APCS having culture chamber volumes of 55, 143, 365, 462, 925, 1850, 6000, and 16,400 ml, respectively. Plans are presented for the construction of various culture chambers used in an APCS. The APCS consisted of a peristaltic pump, media reservoir containing 1 liter of liquid nutrient medium, and a culture chamber. Cultures grown with an APCS consistently produced higher fresh weights than cultures using any of the agar culture systems tested. Growth rates varied considerably depending on the plant species and culture system tested. Peas, lettuce, and spearmint exhibited flowering only when grown in the APCS. A cost comparison using the APCS versus various conventional tissue culture systems is presented.

Free access

Qudsia Hussaini, Chiwon W. Lee, and Shanqiang Ke

139 POSTER SESSION 21 Cell & Tissue Culture/Cross-Commodity

Free access

R.N. Trigiano, K.M. Kaveriappa, S.E. Schlarbaum, M.T. Windham, and W. Witte

93 ORAL SESSION 19 (Abstr. 129–135) Cell and Tissue Culture