Search Results

You are looking at 21 - 30 of 1,216 items for :

  • Refine by Access: All x
Clear All
Free access

David S. Koranski and Chad G. Ingels

Petunia seeds of `White Cascade', `Red Flash', and `Red Madness' were sown in 406 plug trays on the same date. The first transplanting occurred when the plants could be removed from the cells without root damage. Subsequent transplanting occurred for four weeks. The first transplanting of `White Cascade' flowered two weeks earlier than the second while the third transplanting was one week behind the second. `Red Flash' flowered two weeks earlier for the first transplanting. There was no effect on time to flower for the `Red Madness'. The highest fresh and dry weights corresponded to the earliest flowering transplants. Optimum growth and development for most petunia cultivars was obtained with the earliest transplanting without root damage.

Free access

Brian A. Krug, Brian E. Whipker, Jonathan Frantz, and Ingram McCall

Reports of distorted terminal growth of pansy, petunia, and gerbera plants have become more prevalent, specifically in plugs grown in the high heat and humidity conditions of summer. The problem, considered to be a deficiency of calcium (Ca) or

Free access

George Lazarovits

Plant growth-promoting rhizobacteria (PGPR) enhance plant development by many mechanisms. Indirect growth effects result from PGPR activities that displace soilborne pathogens and thereby reduce disease. Direct effects include improved nutrition, reduced disease due to activation of host defenses, and bacterial production of phytohormones. An understanding of the mode of action is essential for exploitation of PGPR for field use. For instance, bacteria that act as biological control agents can only be of benefit at locations where disease occurs. PGPR that stimulate plant growth directly will likely have more universal uses and greater impacts. Thus, we have been developing model systems for identifying PGPR with such traits. In this presentation, the effects of bacterization of tissue culture-grown plants, plug transplants, and seed with a growth-promoting Pseudomonas sp. (PsJN) will be described. Potential uses for this and other PGPR will also be identified. The talk will consider the advantages and limitations of: a) screening methods used for selection of PGPR, b) model systems available for studying the mechanisms of action, and c) why transplants offer an ideal delivery system for rhizobacteria. Results from field trials with PGPR with different modes of action will be presented and their future role in agriculture considered.

Free access

M. P. Kaczperski and A. M. Armitage

The effects of differing storage conditions prior to transplanting were examined for Salvia splendens `Red Hot Sally', Impatiens wallerana `Super Elfin White', Viola × wittrockiana `Universal Beaconsfield' and Petunia × hybrida `Supercascade Lilac'. Plug-grown seedlings were stored for 0, 1, 2 or 3 weeks at 5C or 10C and irradiance levels from incandescent bulbs at 0, 2 or 12 μmol s-1 m-2. A second group of plants were stored at 18C and irradiance from fluorescent bulbs at 105 μmol s-1 m-2 for the same time period. Temperature was more important than irradiance in maintaining plant quality over the storage period. Impatiens and salvia could be stored successfully for a minimum of 2 weeks at 5 or 10C with no appreciable loss of quality, petunia and pansy up to 3 weeks. Seedlings of all species showed diminished quality when stored longer than 1 week at 18C. After storage, petunias stored at 18C flowered sooner than those stored at 5 or 10C. However, these plants were single stemmed, with long internodes and few flowers while those plants stored at 5 or 10C developed multiple branching and a short, compact growth habit at flowering.

Free access

M.P. Kaczperski and A.M. Armitage

The effects of storage conditions before transplanting were examined for Petunia × hybrida Vilm. `Supercascade Lilac', viola × wittrockiana Gams `Universal Beaconsfield', and Salvia splendens F. Sellow ex Roem. & Schult `Red Hot Sally'. Plug grown seedlings were stored for 0, 7, 14, or 21 days at 5 or 10C and with continuous irradiance levels from incandescent bulbs at 0, 2, or 12 μmol·m-2·s-1. A second group was stored at 18C with irradiance from fluorescent bulbs at 105 μmol·m-2·s-1 and a 16-hour photoperiod for the same durations. Temperature was more important than irradiance in maintaining a commercially acceptable plant during the storage period. Petunia and pansy could be stored successfully for 21 days at 5 or 10C with no appreciable loss of quality; salvia could be stored for a minimum of 14 days. Seedlings of all species elongated excessively when stored >7 days at 18C and 105 μmol·m-2·s-1 irradiance. After 14 days of storage, petunias stored at 18C flowered sooner than those stored at 5 or 10C but time in a production environment (days to flower - days in storage) was similar for petunias stored at 5 or 18C.

Open access

Joshua K. Craver, Krishna S. Nemali, and Roberto G. Lopez

. Upon hypocotyl emergence, seedlings were irrigated with 16N–0.94P–12.3K water-soluble fertilizer (Jack’s LX Plug Formula for High Alkalinity Water; J.R. Peters, Allentown, PA) providing (mg·L −1 ): 100 N, 10 P, 78 K, 18 Ca, 9.4 Mg, 0.10 B, 0.05 Cu, 0

Free access

Toshio Shibuya, Yoshiaki Kitaya, Toyoki Kozai, and Masaichi Nakahara

Net photosynthetic and evapotranspiration rates of tomato (LAI = 2.3) and lettuce (LAI = 6.6) plug sheets were estimated based on measurements of the weight of plug sheets and vertical profiles of CO2 concentration above the plug sheets. The measurements were continued in situ for several days in a greenhouse when plugs were at transplant stage. The maximum net photosynthetic rates of tomato and lettuce plug sheets were 0.8 and 2.0 mg CO2/m2 per sec on a plug sheet area basis, respectively. The maximum evapotranspiration rates of those sheets were 100 mg·m–2·s–1. Net photosynthetic and evapotranspiration rates of tomato and lettuce plug sheets increased linearly with an increase in solar radiation flux, with a correlation coefficient of 0.9.

Free access

Jeff S. Kuehny, Aaron Painter, and Patricia C. Branch

Plug production has increased the finished quality and uniformity of bedding plants, making them one of the most important greenhouse crops grown. The wide range of cultural practices used by different growers to produce plugs, may influence the efficacy of plant growth regulators applied to the same crop in postplug production. Ten bedding plant species were grown from plugs obtained from two sources using different cultural practices. The plugs were transplanted to jumbo six packs and sprayed with either chlormequat/daminozide tank mix, ancymidol, or paclobutrazol at three concentrations at three times of year. The effect of each plant growth regulator varied by plant species and time of year applied. Source of plug material did have a significant effect on height and time of flowering of finished bedding plants and the use of plant growth regulators did not minimize the differences in height between sources in most cases.

Free access

James E. Faust, Hiroshi Shimizu, and Royal D. Heins

Surface temperature of a soilless medium in white, gray, and black plug sheets was measured to determine the value of using plug sheets of different colors to control soil temperature during seed germination and young seedling growth. Plugs sheets were placed in a greenhouse set at 25°C. Soil surface temperatures were measured with fine-wire thermocouples inserted into the top 1 mm of the soil. A thermal image analyzer was used to determine the temperature variation across the plug flat. At night, soil temperature in all three colored flats was 3°C below air temperature because of evaporation and net longwave radiative losses to the greenhouse glass. Surface temperature of moist soil increased as solar radiation increased. Soil surface temperature in the white sheet was 6.3 and 10°C warmer than the air under solar radiation conditions of 350 and 700 W ·m-2 (about 700 and 1400 μmol·m-2·s-1), which was 3 and 2°C cooler than soil the black and gray plug sheets, respectively. These data indicate plug sheet color influences soil surface temperature, but not as much as solar radiation does. Preventing high solar radiation during the summer is more critical than plug sheet color.

Free access

Michelle Le Strange

In recent years, an estimated 65% of processing tomato acreage has converted from direct seeding to transplanting the crop. Growers have been switching to transplants for a number of reasons, including land use efficiency, water conservation, and weed management. Field studies investigating plant spacing and multiple plants per transplant plug (cell) were initiated when observations by growers indicated that there were seemingly decreased fruit yields from transplanted crops. A transplant density experiment was established in 2004 in a commercial field of processing tomatoes grown on the west side of Fresno County in the San Joaquin Valley, the major tomato production area in California. The field trial investigated in-row spacing (37.5 cm and 75 cm), the number of plants per transplant plug (1, 2, or 3), on a medium vine size variety (Halley 3155) and a large vine size variety (AB2). Individual plots were large enough for mechanical harvest. Yield results indicate that these two varieties responded similarly to increasing plant density. In general, a spacing of 37.5 cm with 2 or 3 plants per plug yielded significantly more than 1 plant per plug, regardless of variety. There was no yield advantage in seeding 3 plants per plug when compared to yields with 2 plants per plug, regardless of variety or in-row plant spacing. A plant spacing of 75 cm with only 1 plant per plug yielded the least.