Search Results

You are looking at 21 - 30 of 287 items for :

  • "heat treatment" x
  • Refine by Access: All x
Clear All
Free access

William S. Conway, Carl E. Sams, Chien Yi Wang, and Judith A. Abbott

`Golden Delicious' apples (Malus domestics Borkh.) were treated with heat or CaCl2 solutions or a combination thereof to determine the effects of these treatments on decay and quality of fruit in storage. Heat treatment at 38C for 4 days, pressure infiltration with 2% or 4% solutions of CaCl2, or a combination of both, with heat following CaCl2 treatment affected decay and firmness during 6 months of storage at 0C. The heat treatment alone reduced decay caused by Botrytis cinerea (Pers.:Fr.) by ≈30%, while heat in combination with a 2% CaC12 solution reduced decay by ≈60 %. Calcium chloride solutions of 2% or 4% alone reduced decay by 40 % and 60 %, respectively. Heat treatments, either alone or in combination with CaC12 treatments, maintained firmness (80 N) best, followed by fruit infiltrated with 2% or 4% solutions of CaCl2 alone (70 N) and the nontreated controls (66 N). Instron Magness-Taylor and Instron compression test curves show that heat-treated fruit differed qualitatively and quantitatively from nonheated fruit. Heat treatment did not increase the amount of infiltrated Ca bound to the cell wall significantly, and a combination of heat treatment after CaCl2 infiltration increased surface injury over those fruit heated or infiltrated with CaCl2 solutions alone.

Free access

Susan Lurie, Joshua D. Klein, and Ruth Ben Arie

A prestorage heat treatment of 38C for 4 days applied to `Granny Smith' apples (Malus domestics Borkh.) before regular air storage at 0C inhibited the development of superficial scald. Heat-treated apples stored for 3 months had superficial scald levels similar to diphenylamine (DPA)-dipped apples, while all nontreated control apples had scald. After 5 or 6 months of storage, this inhibition of scald development by prestorage heat treatment declined. The prestorage heat treatment inhibited the accumulation of α-farnesene and conjugated trienes in apple cuticle during storage, while DPA inhibited only α-farnesene oxidation. This treatment may be a substitute for chemical treatments against scald not only for short-term storage of `Granny Smith' but possibly also for other scald-susceptible apple cultivars.

Free access

M.I. Cantwell, G. Hong, and T.V. Suslow

Extension growth of minimally processed (removal of roots and compressed stem) green onions (Allium cepa L. × A. fistulosum L.) was greatly reduced by storage in air at 0 °C, while growth of 10-20 mm occurred at 5 °C over 10 days. Heat treatments of 52.5 and 55 -°C water for 4 and 2 min, respectively, were especially effective in reducing growth to less than 5 mm during 12-14 days at 5 °C. Growth was inhibited irrespective of whether the heat treatments were applied before or after cutting. Heat treatments resulted in higher average respiration rates during 12 days at 5 °C, but did not affect the overall visual quality or shelf life. Treatments with 52.5 °C water alone or in combination with different chlorine concentrations (50 to 400 mg·L-1 NaOCl, pH 7.0) were more effective than use of water or chlorine solutions at 20 °C for initial microbial disinfection.

Free access

D.P. Murr, K. Hustwit, R. Tschanz, M.V. Rao, and G. Paliyath

Heat treatment of apples (Malus domestica Borkh cvs. Red Delicious, Starkrimson) and its effect on scald development have been investigated. Several parameters indicative of scald, such as ethanol and acetaldehyde content, UV-absorbing components from skin, and fruit quality parameters, such as fruit firmness and soluble solids content, were monitored after exposing apples to heat therapy at 40C for 24 h, followed by storing them at room temperature in polyethylene bags. In general, heat-treated apples possessed higher ethanol and acetaldehyde levels. As well, heat-exposed apples appeared to possess a lower degree of scald. The content of soluble solids did not appear to be affected by heat treatment. The degree of firmness, however, was maintained in heat-treated apples. Effect of heat treatment on several other physiological and biochemical parameters will be presented.

Free access

R.E. McDonald, T.G. McCollum, and E.A. Baldwin

Mature-green `Sunbeam' tomatoes (Lycopersicon esculentum Mill.) were treated in varying order with C2H4, 42 °C water for 1 hour, 38 °C air for 2days, held 2 days at 20 °C (partial ripening), or not treated and then stored at 2 °C (chilled) for 14 days before ripening at 20 °C. Heat-treated fruit stored at 2 °C and transferred to 20 °C ripened normally, while 63% of nonheated fruit decayed before reaching the red-ripe stage. Partially ripened fruit developed more chilling injury, were firmer, were lighter, and were less red in color than fruit not partially ripened. Lycopene content and internal quality characteristics of fruit were similar at the red-ripe stage irrespective of sequence of C2H4 exposure, heat treatment, or a partial ripening period. Of the 15 flavor volatiles analyzed, 10 were reduced by storage at 2 °C, Exposure to C2H4 before the air heat treatment reduced the levels of four volatiles, while C2H4 application either before or after the water heat treatment had no effect on flavor volatiles. Two volatiles were decreased and two were increased by partial vipening, Storage at 2 °C decreased the level of cholesterol and increased levels of campesterol and isofucosterol in the free sterol pool. Exposure to C2H4 before or following heat treatments, the method of heat treatment, and partial ripening had little effect on free sterols, steryl esters, steryl glycosides, or acylated steryl glycosides in the pericarp of red-ripe fruit. A shortor long-term heat treatment of mature-green tomatoes could permit storage at low temperatures with little loss in their ability to ripen normally, whereas partial ripening did not reduce chilling injury.

Free access

Fouad M. Basiouny

Fruit of Rabbiteye blueberry (Vaccinium ashie Reade cv. `Tifblue') were hand-picked at horticultural maturity and received postharvest liquid coating and heat treatments at 37.7°C for 30 minutes. After precooling for 2 hours and subjected to the treatments, fruit were placed in ventilated card boxes and stored at 1 ± 2°C and 90% to 95% relative humidity for 4 weeks. Heat, liquid coating, or both benefited fruit by reducing storage moisture loss and prolonging fruit shelf life compared to nontreated fruit. However, combining liquid coating with heat treatment did not result in higher differences in storability or fruit quality characteristics.

Free access

R.E. McDonald, T.G. McCollum, and E.A. Baldwin

The objective of this study was to determine the effects of prestorage heat treatments on chilling tolerance of tomatoes. Mature-green `Agriset' tomato fruit (Lycopersicon esculentum Mill.), either C2H4-treated or not, were immersed in 42C water for 60 min, held in 38C air for 48 hours, or not treated, and then stored at either 2C (chilled) or 13C (nonchilled) for 14 days before ripening at 20C. Heat-treated fruit stored at 2C and transferred to 20C ripened normally while nonheated fruit decayed before reaching red ripe. Color (a*/b* ratio), lycopene content, and internal quality characteristics of fruit were similar at the red-ripe stage irrespective of method of heat treatment. In red-ripe heat-treated fruit, free sterol levels were significantly higher in chilled fruit than in nonchilled fruit. Heating fruit in 38C air resulted in significantly higher levels of some free sterols compared with heating fruit in 42C water. Of the 15 flavor volatiles analyzed, six showed significantly decreased concentrations as a result of C2H4-treatment and seven showed decreased concentrations when stored at 2C before ripening. Some volatiles were decreased by the heat treatments. Prestorage short- and long-term heat treatments could allow for storage of mature-green tomatoes at lower temperatures with little loss of their ability to ripen normally.

Free access

Stéphane Roy, William S. Conway, Alley E. Watada, Carl E. Sams, Eric F. Erbe, and William P. Wergin

`Golden Delicious' apples (Malus domestica Borkh) were pressure-infiltrated at harvest with a 4% CaCl2 solution either without prior heat treatment or following 4 days at 38C. Examination of the apple surfaces from both treatments by low-temperature scanning electron microscopy revealed that heat treatment changed the pattern of epicuticular wax. The epicuticular wax of nonheated fruit exhibited numerous deep surface cracks that formed an interconnected network on the fruit surface. The epicuticular wax of heat-treated fruit did not exhibit a similar network of deep cracks. This apparent obstruction or elimination of deep cracks may limit the CaCl2 solutions from entering the fruit. The heated fruit contained significantly less Ca than the fruit that were pressure-infiltrated with CaCl2 solutions but not heated. These results indicate that cracks on the fruit surface may be an important pathway for the penetration of CaCl2 solutions.

Free access

Robert A. Saftner, Judith A. Abbott, William S. Conway, and Cynthia L. Barden

Prestorage heat, CA storage, and pre- and poststorage treatments with the ethylene action inhibitor, 1-methylcyclopropene (MCP), were tested for their efficacy at inhibiting fungal decay and maintaining quality in `Golden Delicious' apples [Malus sylvestris (L.) Mill. Yellow Delicious Group] stored 0 to 5 months at 0 °C and 7 days at 20 °C. Before storage in air at 0 °C, preclimacteric fruit were treated with either MCP at a concentration of 1 μL·L-1 for 17 hours at 20 °C, 38 °C air for 4 days, MCP plus heat, or left untreated. Some sets of untreated fruit were stored in a controlled atmosphere of 1.5 kPa O2 and 2.5 kPa CO2 at 0 °C while other sets were removed from cold storage in air after 2.5 or 5 months, warmed to 20 °C, and treated with 1 μL·L-1 MCP for 17 hours. Prestorage MCP, heat, MCP plus heat treatments and CA storage decreased decay severity caused by wound-inoculated Penicillium expansum Link, Botrytis cinerea Pers.:Fr., and Colletotrichum acutatum Simmonds (teleomorph Glomerella acutata J.C. Guerber & J.C. Correll sp.nov.). Poststorage MCP treatment had no effect on decay severity. Both prestorage MCP treatment and CA storage delayed ripening as indicated by better retention of green peel color, titratable acidity, and Magness-Taylor flesh firmness, and the reduced respiration, ethylene production rates, and volatile levels that were observed upon transferring the fruit to 20 °C. The prestorage MCP treatment delayed ripening more than CA storage. Following 5 months cold storage, the prestorage MCP treatment maintained the shape of the compression force/deformation curve compared with that of fruit at harvest, as did CA storage, but at a lower force profile. The heat treatment had mixed effects on ripening: it hastened loss of green peel color and titratable acidity, but maintained firmness and delayed increases in respiration, ethylene production and volatile levels following cold storage. The MCP plus heat treatment inhibited ripening more than heat treatment alone but less than MCP treatment alone. In one of 2 years, the MCP plus heat treatment resulted in superficial injury to some of the fruit. Results indicated that MCP may provide an effective alternative to CA for reducing decay severity and maintaining quality during postharvest storage of `Golden Delicious' apples. Prestorage heat to control decay and maintain quality of apples needs further study, especially if used in combination with MCP.

Free access

R.E. McDonald, W.R. Miller, and T.G. McCollum

Irradiation is being evaluated as a quarantine treatment of grapefruit (Citrus paradisi Macf. `Marsh'), but it can cause damage to the fruit. Research was conducted to determine if preirradiation heat treatments would improve fruit tolerance to irradiation as they improve tolerance to low temperature injury and to determine if canopy position influenced fruit tolerance to irradiation. Initially, grapefruit were irradiated at 0 or 2.0 kGy at a dose rate of 0.14 kGy·min-1 and selected biochemical changes were monitored over time. There was a marked increase in phenylalanine ammonia-lyase (PAL) activity following irradiation. Maximum activity (≈18-fold increase) was attained 24 hours after irradiation. Subsequently, grapefruit were harvested from interior and exterior canopy positions and irradiated at 0 or 1.0 kGy at a dose rate of 0.15 kGy·min-1 before storage for 4 weeks at 10 °C. Following storage, pitting of flavedo was the most evident condition defect noted as a result of irradiation. Pitting was observed on 27% and 15% of irradiated exterior and interior canopy fruit, respectively, whereas there was no pitting on nonirradiated fruit. Heat treatment before irradiation decreased susceptibility of fruit to damage. Pitting was 26%, 19%, and 17% when fruit were held 2 hours at 20 (ambient), 38 or 42 °C, respectively. Irradiation-induced PAL activity was reduced by temperature conditioning at 38 or 42 °C. Exterior canopy fruit flavedo contained higher levels of total phenols, including flavanols and coumarins compared with interior canopy fruit. Deposition of lignin was not related to canopy position. Neither irradiation nor heat treatment had an effect on total phenols or lignin deposition. Generally, cholesterol, campesterol, stigmasterol, β-sitosterol, and isofucosterol were found to be higher in four steryl lipid fractions in exterior canopy fruit compared with interior canopy fruit. Irradiation increased campesterol in the free sterol and steryl glycoside fractions and decreased isofucosterol in the free sterol fraction. Heat treatments had no effect on individual sterol levels. It seems that irradiation causes a stress condition in the fruit, which leads to pitting of peel tissue. Heat treatment before irradiation reduced damaging effects of irradiation.