Search Results

You are looking at 21 - 30 of 88 items for :

  • Refine by Access: All x
Clear All
Free access

Carlos A. Parera and Daniel J. Cantliffe

Poor emergence and low seedling vigor are characteristics of many supersweet sweet corn (Zea mays L.) cultivars carrying the shrunken-2 (sh2) gene. Four sh2 sweet corn cultivar seeds [`How Sweet It Is' (HSII), `Crisp N' Sweet 711' (CNS-711), `Sweet Belle' (SB), and `Dazzle' (DZ)] were solid-matrix-primed (SMP), SMP with sodium hypochlorite (SMPcl), treated with a fungicide combination (F) (Imazalil + Captan + Apron + Thiram), or primed with the aforementioned fungicides (SMPf). The seed treatments were tested in the laboratory and the field. Seed imbibition and leachate electrical conductivity were lower in SMP seeds than in nonprimed seeds. In the field, emergence percentage and rate of CNS-711 and SB (high-vigor seeds) were not improved by the seed treatments compared to the nontreated seeds. Emergence percentage and rate of HSII and DZ (considered low-vigor seeds) were improved as a result of SMPcl, SMPf, or F treatments compared to nonprimed seeds. Compared to the F treatment, the SMPcl presowing treatment increased DZ seedling emergence rate and percentage. The combined SMP and seed disinfection via NaOCl seems to be a promising fungicide seed-treatment substitute that improves the stand establishment and seedling vigor of sh2 sweet corn cultivars. Chemical names used: 1-[2-(2,4-dichlorophenyl)-2-(2-propenyloxy)ethyl]-1 H imidazole (Imazalil); N-[(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide(Captan); N- (2,6-dimethylphenyl)- N -(methoxyacetyl)alanine methyl ester (Apron); tetramethylthiuram disulfide (Thiram).

Free access

Alan R. Biggs

The proportion of spurs blooming on `McIntosh' apples (Malus domestica Borkh.) was reduced significantly in 1986 and 1988, but not in 1987, following seasonal programs of six bitertanol or flusilazole treatments applied at two and three rates, respectively. The fungicides were not associated with any visible phytotoxic effect nor was shoot length reduced by any fungicide treatment. In two of three experiments conducted in May and June 1986, transpiration was reduced by the low rate of flusilazole and the high rate of bitertanol relative to both the captan and nonsprayed trees. In all three experiments, flusilazole at 1.4 g a.i./100 liter was associated with transiently reduced transpiration rates, lasting a minimum of 48 hours, relative to the nonsprayed control. Fungicides affected the diffusive resistance of apple leaves in all three experiments; however, there were no consistent treatment effects on diffusive resistance among the three experiments.

Free access

M. Ahmedullah and P. Bristow

Concord blueberries treated with biocontrol fungi (Trichoderma and Gliocaladium) both at 1 and 2x rates and with fungicides benlate + captan + B 1956 and Tween for controlling botrytis flower blight were stored at 32F. Trichoderma (2x)-treated fruit was 71% without infection; Gliocaladium (2x)-treated fruit 69%, compared to 57% from untreated control. Momentum Transfer Generator (MTG) readings indicating fruit firmness ranged from 474 to 494 for the above treatments, indicating that fruit firmness was not affected by the treatments. Concord blueberries from bushes infected with blueberry scorch carla virus showed no difference in fruit firmness compared to healthy berries either before or after 7 weeks of storage at 32F.

Free access

Richard Marini, John Barden, and Donald Sowers

In 1993 a factorial experiment, involving nine apple cultivars on M.9 root-stock and six fungicide regimes, was established. The cultivars included `Delicious', `Golden Delicious', `York Imperial', `Redfree', `Freedom', `Liberty', NY 74828-12, NY 73334-35, and NY 74840-1. The fungicide treatments included earlyseason sprays of Bayleton or Dodine, separately or combined, and late-season sprays of Captan plus Benomyl alone or combined with early-season sprays of Bayleton plus Dodine. Non-sprayed trees served as a control. In 1995 leaves and fruits were evaluated for disease symptoms. Leaf spot (symptoms caused by black rot or alternaria leaf blotch) was most severe on `Redfree' and NY 73334-35, and least severe on `Delicious', `Golden Delicious', and `York'. By late summer NY 74828-12 had the most leaf abscission, whereas NY 74840-1, `Liberty', and `Delicious' lost the fewest leaves. Early-season fungicide sprays did not reduce early leaf abscission. Sooty blotch and fly speck, but not rots, were nearly eliminated by late-season applications of Captan plus Benomyl. Averaged over all fungicide treatments, more than half of the fruits from `Delicious', `Redfree', and NY 74828-12 were free of disease symptoms. Cultivars with <25% of the fruits without infection included `York', `Liberty', NY 74840-1 and NY 73334-35. `York' and `Redfree' had >25% of the fruits with rots, while all other cultivars had <9% fruits with rots. `Delicious' and NY 73334-35 had the fewest rotten fruits. Rots were not controlled by any fungicide treatment. `Liberty' and NY 73334-35 had the most flyspeck and `Redfree' had the least. `Liberty', NY 74840-1 and NY 73334-35 had the most sooty blotch and `Redfree' and NY 74828-12 had the least.

Free access

T.K. Hartz and J. Caprile

Sweet corn (Zea mays L.) cultivars carrying the sh2 mutation show poor seed vigor under stressful field conditions, requiring higher seeding rates to ensure stand establishment. The effects of sodium hypochlorite seed disinfestation, solid matrix priming (SMP), and seed-coating with Gliocladium virens Miller, Giddens & Foster to enhance emergence of sh2 sweet corn in controlled-environment cold stress tests and field trials were investigated. In combination with a chemical fungicide seed treatment (captan, thiram, imazalil, and metalaxyl), SMP significantly improved the percentage and rate of seedling emergence of `Excel' and `Supersweet Jubilee' in a cold stress test (in soil for 7 days at 10C, then 15C until emergence) but was inconsistent under field conditions, improving emergence in only one of four field trials. Sodium hypochlorite disinfestation was ineffective. Compared to a film-coated control, coating seeds with G. virens strain G-6 was highly effective in increasing emergence in two of three cultivars tested in cold stress tests in two soils, while strain G-4 was generally ineffective. In field trials, G-6 treatment significantly increased emergence over that of nontreated seed but was inferior to conventional fungicide treatment and conferred no additional benefit in combination with fungicide treatment. Overall, no seed treatment evaluated was an economically viable alternative for or supplement to chemical fungicide treatment. Chemical names used: cis-N-trichloromethylthio-4-cyclohexene-1,2-dicarboximide (captan); tetramethyl-thiuram disulfide (thiram); 1-[2-(2,4-dichlorophenyl)-2-(2-propenyloxy)ethyl]-1H-imidazole (imazalil); N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-alanine methyl ester (metalaxyl).

Free access

W.R. Jester, M. L. Adams, and G. J. Holmes

The experiment was conducted at the Cunningham Research Station in Kinston, N.C. (coordinates: N35 18.372; W77 34.937), on Goldsboro loamy sand. Three cultural systems (bare ground + overhead irrigation bare ground + drip irrigation, black plastic + drip irrigation) and seven fungicide treatments were evaluated in a split-plot design with cultural system as the main plot and fungicide treatments as subplots. The cultivar used was `Mickey Lee'. The trial was installed 18 July. Soil moisture was monitored in each of the cultural regimes using soil moisture sensors (Spectrum Technologies, Inc, Plainfield, IL) and rain gauges. The cultural systems using drip irrigation were irrigated to 10 cb starting when soil moisture reached 40 cb. Overhead irrigation was used to maintain at least 2 inches per week total precipitation beginning 12 Aug. Cultural systems and fungicide treatments were replicated 4 times. To prevent gummy stem blight and powdery mildew, Pristine (14.5 oz/acre) and Quintec (6 oz/acre) were alternated with Bravo Weather Stik (2 pt/acre) and Flint (4 oz/acre) on a 7-day interval, beginning 16 Aug. Experimental fungicide treatments were applied using a CO2 backpack sprayer equipped with a 3-nozzle (19-inch spacing) handheld boom with hollow cone nozzles (TXVS-26) delivering 40 gal/acre at 45 psi. Treatments were initiated when the largest fruit were about 6 inches in diameter. All treatments were applied on a 7-day interval with applications on 25 Aug. and 2, 9, 16, and 23 Sept. Plots were inoculated on 12 and 19 Sept. by hand-scattering 0.5 lb of 1-cm cubes of naturally P. capcisi-infected acorn squash fruit per plot. Disease severity was evaluated on 26 Sept. as fruit rot incidence and percent foliar necrosis. Captan was most effective in suppressing fruit rot regardless of cultural regime. Captan and NOA-446510 were both effective in reducing vine collapse across all cultural regimes. Incidence of fruit decay was significantly greater in the bare ground + overhead irrigation (overhead) cultural regime while plasticulture (plastic) and bare ground + drip irrigation (drip) resulted in similar levels of fruit decay and vine collapse. No interaction of cultural regime with treatment was detected. Watermelon stems and foliage are typically very resistant to Phytophthora blight, but significant vine collapse occurred in many plots. P. capsici was consistently isolated from diseased foliage and stems and is considered the primary cause of vine collapse.

Free access

E.E. Chesick, D.E. Bilderback, and G.M. Blake

Vegetative long-shoot buds, greenwood stems, and immature needles of 20-year-old western larch (Larix occidentalis Nutt.) were cultured to induce multiple bud formation. Explants were collected year-round and cultured on a modified Schenk and Hildebrandt (SH) medium containing 6-benzyladenine (BA) at 0, 1, 5, 10, 50, or 100 μm. Multiple buds were produced on buds and stems with terminal meristems, but not on needles or stem sections. The induction of de novo buds and development of axillary buds required BA at 1 to 10 μm; higher concentrations of BA were less effective. More explants formed multiple buds on SH than on modified Murashige and Skoog (MS) media. Multiple buds formed on more buds and stems excised during the growing season than from dormant buds. Buds cultured on media containing gibberellin died within 6 weeks; auxin caused bud elongation but no multiple buds formed. Chemical names used: N-[(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide (captan); 6-benzyladenine (BA); 1H-indole-3-butyric acid (IBA); 1H-indole-3-acetic acid (IAA); gibberellin (GA4+7).

Free access

Zhiguo Ju, Yousheng Duan, and Zhiqiang Ju

In China, one of the most serious problems to fruit growers is too much vegetative growth and too many pests and diseases during the growing season. Therefore, a large number of growth regulators, pesticides, and fungicides are used each year, which increases production costs and causes environmental pollution. To reduce the usage of agrochemicals, a device was invented to confine the treated area. Instead of applying chemicals directly to leaves, which may have reduced the efficiency by washing or UV degradation, the chemicals were injected directly to the truck of trees and transported through the xylem to the target organ, the leaf. Results showed that, to reach the same level of control, using plant regulators such as paclobutrazol, gibberellins, and ascorbic acid, the amount used could be reduced by 50% to 80%. The use of fungicides such as captan and diazinon could be reduced by 35% to 60%, and the use of pesticides such as vendex could be reduced by as much as 50%. Compared with the conventional method, the injection method showed three advantages: 1) It is economical in that production costs were reduced by about 40%, 2) It is efficient in that the same level of control was achieved using less chemicals (Due to the small acreage cultivated by family growers in China, the device could be installed within days and chemicals could be applied within hours.), 3) It is environmentally friendly because chemicals were not released throughout the orchard.

Free access

Jocelyn A. Ozga and F.G. Dennis Jr.

Exposure of stratified apple (Malus domestics Borkh. cv. Golden Delicious) seeds to 30C induces secondary dormancy. To determine if an increase in abscisic acid (ABA) content was associated with the loss in germination capacity, stratified seeds (3,- 6, or 9 weeks at 5C) were held at 30C for 0, 3, or 6 days. Stratification at 5C either had no effect or increased ABA content in embryonic axes, cotyledons, and seed coats. Exposure to 30C after stratification either did not affect or decreased ABA content of embryonic axes and seed coats; in contrast, cotyledonary ABA was increased. Seed coats, cotyledons, and embryonic axes stratified for 3, 6, or 9 weeks at 20C contained the same or higher levels of ABA in comparison with nonstratified seeds or seeds stratified at SC. Changes in ABA levels were not consistently correlated with changes in germination capacity during stratification or after exposure to 30C. These data suggest that changes in ABA are not related to changes in dormancy. Chemical names used: abscisic acid (ABA); butylated hydroxy-toluene (BHT); n-(trichloromethyl) thio-4-cyclohexene-1,2-dicarboximide(Captan).

Free access

K.C. Taylor

The absence of red color in a streaked “Bleaching” pattern is periodically noted on late-season peaches in middle Georgia. The streaked pattern led to a hypothesis that accumulation of pesticides in the stem end of the fruit prevented anthocyanin formation. However, analysis of pesticide residues on affected and unaffected peel suggested this was unlikely. We observed that trees affected by fungal gummosis (caused by Botrysphearia dithodia) were most often affected by the “bleaching” phenomenon and that `Summer Gold', the most fungal gummosis–susceptible variety, had the greatest incidence of the disorder. In a preliminary trial, we tested the hypothesis that fungal gummosis mediates “bleaching” by interfering with anthocyanin color formation in the peel of developing fruit. Tree gum/resin and pesticides were tested for their effect on peel color development. The gum/chemical preparations were dripped onto fruit prior to anthocyanin or red pigment formation in peach peel. After the anthocyanescent period, fruit were observed for bleaching. The gum mediated a negative effect by sulfur, captan, and carbaryl in peel color formation in peach. Fenbuconizole and phosmet had a less negative effect on color formation, although the effect was noticeable. The gum alone, propiconizole, and chlorothalonil did little to effect on peel color formation.