Search Results

You are looking at 21 - 30 of 85 items for :

  • Refine by Access: All x
Clear All
Free access

Teresa E. Seijo, Natalia A. Peres, and Zhanao Deng

Caladium ( Caladium × hortulanum Birdsey) is an ornamental aroid grown as landscape and potted plants. They are valued for their colorful foliage that comes in various leaf shapes and coloration patterns containing shades of red, pink, white

Free access

James E. Barrett, Carolyn A. Bartuska, and Terril A. Nell

Paclobutrazol drench treatments were evaluated for efficacy on Caladium ×hortulanum (Birdsey) cultivars Aaron, White Christmas, and Carolyn Wharton. Drenches at 2.0 mg/pot did not reduce height of `Aaron' and `White Christmas' plants when applied 1 week after planting, but 2.0 mg applied at 3 weeks after planting did result in shorter plants. The difference for time of application may be due to the amount of roots present to take up paclobutrazol when applied. In two factorial experiments, there were no interactions between cultivar and time of application or amount of chemical. Paclobutrazol at 0.5 mg/pot resulted in plants that were shorter than the controls. Higher amounts of paclobutrazol provided additional reductions in height, but there was variation between the experiments for degree of effect with amounts >1 mg. Generally, commercially acceptable height control was provided by paclobutrazol drench treatments at 0.5 and 1.0 mg/pot applied 3 weeks after planting. Chemical names used: (2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-1,2,4-triazol-1-yl-pentan-3-ol (paclobutrazol).

Free access

Brent K. Harbaugh and Michael R. Evans

Nonplanted Caladium × hortukmum Birdsey `Candidum' tubers were exposed to 26 (control), 38,43, or 48C for 1,2, or 3 days. Then tubers were planted and forced in a glasshouse for 4 weeks at 18 to 33C (air). Leaf emergence from tubers exposed to 48C for 1 or 2 days required 3-12 days longer than leaf emergence from control tubers. No leaves emerged from tubers treated at 48C for 3 days. Exposing tubers to 38C for 3 days or 43C for 1 day did not affect subsequent plant growth. Exposing tubers to 43C for 2 or 3 days or 48C for 1 or 2 days resulted in plants with reduced shoot fresh weights and fewer leaves ≥ 15 cm. In a second experiment, planted tubers were forced for 10 days at 26C so that roots had developed to the edge of the pot and shoots had emerged to the soil surface. These planted (sprouting) tubers were exposed to 43C for 0,4,8,12,16,20, or 24 hours/day for 1,3, or 5 days and then forced for 7 weeks in a glasshouse. With 3- or 5-day treatments, days to leaf emergence increased as the hours of exposure to 43C increased. Only 33% of planted tubers exposed to 43C for 24 hours/day for 5 days sprouted. Tubers exposed to 43C for≤ 12 hours/day for 3 days produced plants of similar or greater height, numbers of leaves □≥15 cm wide, and shoot fresh weights, but additional hours of daily exposure decreased these plant characteristics. At 5 days, plant height, number of ≥ 15-cm-wide leaves, and shoot fresh weight decreased linearly with increased hours of exposure of tubers to high temperature.

Full access

Zhanao Deng and Brent K. Harbaugh

Caladium (Caladium ×hortulanum) leaves can be injured at air temperatures below 15.5 °C. This chilling sensitivity restricts the geographical use of caladiums in the landscape, and leads to higher fuel costs in greenhouse production of pot plants because warmer conditions have to be maintained. This study was conducted to develop procedures to evaluate differences among caladium cultivars for chilling sensitivity and to identify cultivars that might be resistant to chilling injury. The effects of two chilling temperatures (12.1 and 7.2 °C) and three durations (1, 3, and 5 days) on the severity of chilling injury were compared for three cultivars known to differ in their sensitivity to low temperatures. Exposure of detached mature leaves to 7.2 °C for 3 days allowed differentiation of cultivars' chilling sensitivity. Chilling injury appeared as dark necrotic patches at or near leaf tips and along margins, as early as 1 day after chilling. Chilling injury became more widespread over a 13-day period, and the best window for evaluating cultivar differences was 9 to 13 days after chilling. Significant differences in chilling sensitivity existed among 16 cultivars. Three cultivars, `Florida Red Ruffles', `Marie Moir', and `Miss Muffet', were resistant to chilling injury. These cultivars could serve as parents for caladium cold-tolerance breeding, and this breeding effort could result in reduced chilling injury in greenhouse production of potted plants, or in new cultivars for regions where chilling occurs during the growing season.

Full access

Brent K. Harbaugh, David A. DeVoll, and R. Zalewski

Phosphorus is considered a major pollutant of lakes in central Florida, and growers producing crops in the Lake Okeechobee watershed are being challenged to reduce use of P fertilizer. Caladium (Caladium×hortulanum Birdsey) tubers are produced on organic soils within this area. This study was done to determine if current commercial P fertilization rates could be reduced or eliminated, since these organic soils have high levels of water extractable P (Pw). Two farms were selected with low (Farm A 19 lb/acre; 21 kg·ha-1) or high (Farm B 59 lb/acre; 66 kg·ha-1) preplant Pw levels. Production of caladium tubers with the standard grower P fertilization practice (Farm A = P at 39.2 lb/acre; 43.9 kg·ha-1, or Farm B = P at 15.9 lb/acre; 17.8 kg·ha-1) was compared to production with either one-half the standard grower rate of P or no P. The percentage of harvested tubers in each of five grades and the estimated harvested tuber value index were similar irrespective of the amount of P fertilizer used on either farm. These results indicate that P could be eliminated from the fertilization program for caladium tuber production on organic soils.

Free access

Zhanao Deng*, Brent K. Harbaugh, Rick Kelly, Teresa Seijo, and Robert J. McGovern

Caladiums (Caladium × hortulanum) are widely grown for their bright colorful leaves. Pythium root rot, caused primarily by P. myriotylum, is one of the most important diseases in caladiums. This disease can dramatically reduce plant growth, impact plant aesthetical value, and lower tuber yield. Pythium infection in the roots may also lead to subsequent entry of Fusarium into tubers resulting in tuber rot. There has been a strong interest in the tuber production and greenhouse plant production industries to identify cultivars that are resistant or tolerant to Pythium. However, few studies have been conducted since the pathogen was identified, and little information is available regarding the existence of any possible resistance in commercial cultivars. Pythium isolates were made from diseased plants collected from different sites; their pathogenicity was confirmed using tissue culture-derived plants. Procedures were developed for oogonia spore production, inoculation, and disease severity assessment. Nineteen major commercial cultivars were inoculated at two spore densities and then maintained in greenhouses under growing conditions favorable for root rotting. Plant appearance, leaf characteristics and severity of root rotting were evaluated 2-3 times after inoculation. Observations indicated that the isolates were highly virulent. They induced visible root rot within 3-5 days, and caused a complete loss of the root system and plant death for some cultivars within 2-3 weeks after inoculation. Several cultivars, including `Candidum' and `Frieda Hemple' which are widely grown cultivars, had much less root rot, higher plant survival, and seemed to have moderate levels of resistance.

Free access

Zhanao Deng and Brent K. Harbaugh

This research was supported by the Florida Agricultural Expt. Station and grants from the Florida Caladium Growers Association and the Gloeckner Foundation, and approved for publication. We thank Richard Kelly, Nancy West, Joyce Jones and

Free access

Gary J. Wilfret

Caladiums, grown for the colorful foliage in containers and the landscape, are the major floricultural tuber crop grown in Florida. They are planted for their variety of leaf colors, shapes, color patterns, and their ability to grow in areas of reduced light and high temperatures. `Florida Calypso' (FC), a fancy leaf caladium with dark-red central venation and rose and white blotches, was released by the Univ. of Florida in 1995. It is in the same color classification as `Carolyn Whorton' (CW), a top-selling rose/pink cultivar. When grown with on de-eyed 6.5-cm-diameter tuber per 10-cm pot, FC was 33 cm tall, produced five leaves within 33.4 days from planting, and had 33.6 leaves after 8 weeks, compared to 42.9 cm, 48.2 days, and 11.0 leaves, respectively, of CW. When grown in the field for tuber production, FC produced larger tubers, had a greater total tuber yield by weight, and had a higher production index than CW. Tuber yields of FC were not significantly different than `Candidum', the cultivar produced most in Florida. `Florida Calypso' can be grown in heavily shaded areas or in full sun in the landscape and in 10- to 40-cm containers.

Free access

Zhanao Deng and Brent Harbaugh

Caladiums (Caladium×hortulanum) are ornamental aroids often forced in containers or grown in the landscape for their colorful leaves. The aesthetic value of caladium plants is largely determined by their leaf characteristics. Caladium breeding can be traced back to the mid-1800s when Gregor Mendel conducted his plant hybridization experiments, but information on the inheritance of caladium traits has been rather scant. To understand the mode of inheritance for three typical leaf shapes and three main vein colors in caladium, controlled crosses were made among commercial cultivars and breeding lines, and segregation of leaf shape and/or main vein color in the progeny was analyzed. The observed segregation ratios indicated that a single locus with three alleles seemed to determine the main vein color in caladium. The white vein allele was dominant over the green vein allele, but recessive to the red vein allele, which was dominant over both white and green vein alleles. The three leaf shapes (fancy, lance, and strap) in caladium seemed to be controlled by two co-dominant alleles at one locus. Leaf shape segregation was skewed in some crosses, which might imply the existence of other factors involved in caladium leaf shape development. Chi-square tests revealed that leaf shape and main vein color were inherited independently in caladium.

Free access

Zhanao Deng, Brent K. Harbaugh, and Natalia A. Peres

Cultivated caladiums ( Caladium ×hortulanum Birdsey, Araceae Juss.) are valued for their colorful and variable-shaped leaves ( Harbaugh and Tjia, 1985 ; Wilfret, 1993 ). Cultivars generally are divided into three groups according to leaf shape and