Search Results

You are looking at 11 - 20 of 2,921 items for :

  • crop stress x
  • Refine by Access: All x
Clear All
Full access

T.K. Hartz

Overcoming environmental stresses during seedling establishment is crucial to successful vegetable production. In the irrigated production areas of the southwestern United States, stress most often is related to unfavorable temperature, soil or water salinity, or poor soil structure; it is frequently difficult to separate the effects of these stresses because they may all be present to some significant degree. Growers use a variety of techniques to ameliorate these conditions. Advances in seed technology have improved seedling establishment under unfavorable temperatures, particularly for lettuce. The use of sprinkler irrigation for stand establishment has become a widespread practice; sprinkling moderates soil temperature, minimizes salinity in the zone of germination, and reduces soil crusting. By modifying bed configuration, growers have been able to increase soil temperature to stimulate germination. Modifying seed placement and furrow irrigation patterns can create zones of lower salinity. Various chemical and physical treatments have proven effective in reducing soil crusting. The use of transplants-has expanded for many crops, both as a means to circumvent seedling establishment problems, as well as a technique to obtain earliness.

Free access

Alexander X. Niemiera and Monika Goy

A study was conducted to determinethe feasibility of using crop water stress index (CWSI) to schedule irrigation of eight species of freeway landscape plants, Acacia redolens B.R. Maslin, Acacia salicina Lindl., Caesalpinia pulcherrima Sw., Cassia nemophila A. Cunn. ex Vogel, Cercidium floridum Benth., Eucalyptus microtheca F.J. Muell., Nerium oleander L., and Prosopis chilensis Mol. Nerium oleander and C. pulcherrima were suited to the use of the CWSI, tolerated repeated exposures to CWSI values of 0.6, and remained aesthetically acceptable. Irrigation of N. oleander via the CWSI resulted in a 19% reduction in water use, compared to the conventional method. CWSI data of other species were too variable, and, thus, irrigation could not be scheduled by CWSI values. Variability was attributed, in part, to lack of a dense canopy, which is necessary to fill the view of the infrared thermometer.

Free access

Maria Victoria Cremona, Hartmut Stützel, and Henning Kage

Two-year field experiments were carried out to evaluate the suitability of crop water stress index (CWSI) as a basis for irrigation scheduling of kohlrabi (Brassica oleracea L. var. gongylodes) by comparison with irrigation scheduling based on total soil water content (SWC). In the first year, irrigation scheduling when CWSI exceeded 0.3 resulted in more frequent water applications, but the total amount of irrigation water given was lower compared to irrigation when SWC fell below 70%. Kohlrabi tuber fresh weight at harvest was similar in both scheduling treatments, leading to 25% higher irrigation water use efficiency in the CWSI-scheduled plots. In the second year, three threshold levels, i.e., 0.2 and 80%, 0.4 and 60%, and 0.6 and 40% of CWSI and SWC, respectively, were investigated. At the level of highest water supply (CWSI = 0.2 and SWC = 80%), the total amount of water supplied was less in the CWSI but the number of irrigations was higher than in the SWC plots. The CWSI-based approach may be a method for irrigation scheduling of vegetables under temperate conditions. The higher irrigation frequency required would make this method particularly suitable in combination with irrigation system that allow frequent applications, i.e., in drip irrigation. To improve the method, a coupling with a soil water balance model seems promising.

Free access

Avinoam Nerd and Peter M. Neumann

Hylocereus undatus [(Haworth) Britton and Rose] is a vine cactus from central America that has been established as a new fruit crop (pitaya) in many tropical and subtropical countries. In order to develop improved irrigation practices, the relationships between water parameters and growth were studied in rooted stem cuttings growing in pots with sandy soil under well-watered and drought-stressed conditions, in a controlled environment. Soil water potential rapidly decreased from -0.02 to -1.5 MPa during the first 5 days of drought. However, growth of new stems emerging from the succulent mature stems only decreased significantly after 3 weeks of drought. After 3 weeks of drought, the water content of growing stems decreased by 2% (P < 0.05) and their water potentials by 0.05 MPa (P > 0.05), as compared with the irrigated controls. At the same time, water content in drought-treated mature stems decreased by 4% (P < 0.05) and water potentials by 0.25 MPa (P < 0.05). Several lines of evidence indicated that active phloem supply of assimilates and associated water reserves from mature stems was the mechanism that allowed developing stems of H. undatus to maintain growth under well-watered and drought conditions: 1) Girdling the phloem of growing stems rapidly inhibited stem elongation. 2) Secretion of sucrose-containing nectar by growing stems was maintained during drought. 3) The water potential gradient was in the wrong direction for xylem transport from mature to young growing stems and axial hydraulic conductivity in young stems was either zero or comparatively low.

Free access

A. Naor, I. Klein, H. Hupert, Y. Grinblat, M. Peres, and A. Kaufman

The interactions between irrigation and crop level with respect to fruit size distribution and soil and stem water potentials were investigated in a nectarine (Prunus persica (L.) Batsch. `Fairlane') orchard located in a semiarid zone. Irrigation treatments during stage III of fruit growth ranged from 0.62 to 1.29 of potential evapotranspiration (ETp). Fruit were hand thinned to a wide range of fruit levels (200 to 1200 fruit/tree in the 555-tree/ha orchard). Total yield did not increase with increasing irrigation rate above 0.92 ETp in 1996 and maximum yield was found at 1.06 ETp in 1997. Fruit size distribution was shifted towards larger fruit with increasing irrigation level and with decreasing crop level. The two highest irrigation treatments had similar midday stem water potentials. Our findings indicate that highest yields and highest water use efficiency (yield/water consumption) are not always related to minimum water stress. Total yield and large fruit yield were highly and better correlated with midday stem water potential than with soil water potential. This confirms other reports that midday stem water potential is an accurate indicator of tree water stress and may have utility in irrigation scheduling.

Free access

Mike McLean, Stan Howell, and Alvin Smucker

50 ORAL SESSION 13 (Abstr. 088-094) Grape: Culture/Management/Stress

Free access

D.J. Garrot Jr., M.W. Kilby, D.D. Fangmeier, and S.H. Husman


Free access

H.Y. Hanna

Black polyethylene mulch is preferred for producing early spring tomatoes (Lycopersicon esculentum Mill.) because of its warming effect on the soil around the roots. However, using the same mulch for double-cropping cucumbers (Cucumis sativus L.) with tomatoes is considered by some growers to be undesirable because of the belief that heat accumulation under the mulch in midsummer or early fall is detrimental to cucumber yield. Eight studies were conducted from July to September in 1994, 1995, and 1996 to determine the effects of mulching spring tomatoes with black vs. white polyethylene mulch on the growth and yield of subsequent cucumber crops. Soil temperature recorded after planting cucumbers ≈4:00 pm for 3 weeks was higher under black mulch than under white mulch. Color of the mulch did not affect leaf length, leaf width, and plant dry weight of cucumbers in six of the eight studies. Cucumbers grown on black mulch produced longer leaves in one study and wider leaves in two studies, and plant dry weight was lower in two studies. Mulch color had no significant effect on the premium or total yields of cucumbers in all but one study. Cucumbers grown on black mulch produced lower percentages of culls in two studies.