Search Results

You are looking at 11 - 20 of 885 items for :

  • "photosynthetic photon flux" x
  • Refine by Access: All x
Clear All
Free access

Wook Oh*, In Hye Cheon, and Ki Sun Kim

This research was conducted to investigate the growth and flowering responses of Cyclamen persicum Mill. `Piccolo' to temperature and photosynthetic photon fluxes (PPF), and to obtain fundamental data for production of good quality pot plant. Cyclamen plants with 10 fully unfolded leaves were grown in growth chambers maintained at three day/night temperatures [20/10 (LT), 25/15 (MT), and 30/20 °C (HT)] combined with three PPF [250 (LF), 350 (MF), and 650 (HF) μmol·m-2·s-1] under 14 h-photoperiod. After 3 months, the higher the temperature was, the greater plant width was. It was the greatest under MT/MF and HT/MF. The number of leaves was greater with increasing temperature and PPF. Petiole length, leaf size, and fresh weight were higher with increase in temperature but decrease in PPF. Days to flowering were lower in MT/MF and MT/HF, but higher under LT regardless of PPF. The number of flowers was the highest under MT/MF and MT/HF, and higher under MF in each temperature treatment. Flowering period was longer in LT and MT compared with HT. Most leaves of plants grown under HT curled upward because of boron deficiency induced by higher temperature and lower humidity. Chlorophyll content was higher in medium and low temperature, except LT/HF. The lower side of leaf in low temperature was more reddish compared to that in higher temperature due to some pigments considered as anthocyanin. Photosynthesis was the highest in MT/MF, but low in MT/HF and LT/HF in accordance with the chlorophyll fluorescence (Fv/Fm) which was lower under the same environment. These results indicate that 25/15°C and 350 μmol·m-2·s-1 yielded the best pot cyclamen in this study.

Free access

Usha R. Palaniswamy, Richard J. McAvoy, and Bernard B. Bible

Purslane (Portulaca oleracea L.) is an excellent source of the essential fatty acid α-linolenic acid (LNA) but little is known of the effects of cultural conditions on LNA concentration. Purslane seedlings were grown under an instantaneous photosynthetic photon flux [PPF (400 to 700 nm)] of 299 or 455 μmol·m-2·s-1 for a daily duration of either 8, 12, 16, or 20 hours. Thus, plants were exposed to a daily PPF of 8.6, 12.9, 17.2, or 21.5 mol·m-2·d-1 in the low PPF treatment (299 μmol.m-2.s-1) and 13.1, 19.7, 26.2, or 32.8 mol·m-2·d-1 in the high PPF treatment (455 μmol·m-2·s-1). Plants in all treatments received a 20-hour photoperiod by providing ≈5 μmol·m-2·s-1 from incandescent lamps starting at the end of the photosynthetic light period. At low PPF, purslane grown under a 16 hour PPF duration produced the highest concentrations of total fatty acids (TFA) and LNA per unit leaf dry weight (DW), but at high PPF, concentrations of these compounds were highest under 8 and 12 hour PPF duration. Trend analysis indicated that maximum TFA and LNA concentrations occurred with a daily PPF of 14.1 and 17.2 mol·m-2·d-1, respectively; and in the thylakoids, protein, chlorophyll, and LNA concentrations peaked at a PPF of 21.8, 19.9, and 16.1 mol·m-2·d-1, respectively. LNA as a percentage of TFA was unaffected by treatment. Shoot DW increased with PPF up to the highest PPF exposure of 32.8 mol·m-2·d-1.

Free access

Charles Barnes, Theodore Tibbitts, John Sager, Gerald Deitzer, David Bubenheim, Gus Koerner, and Bruce Bugbee

Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3 % to 20 %) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurement, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

Free access

J.G. Carew, K. Mahmood, J. Darby, P. Hadley, and N.H. Battey

The effects of temperature, photosynthetic photon flux density (PPFD) and photoperiod on vegetative growth and flowering of the raspberry (Rubus idaeus L.) `Autumn Bliss' were investigated. Increased temperature resulted in an increased rate of vegetative growth and a greater rate of progress to flowering. Optimum temperatures lay in the low to mid 20°C range. Above this the rate of plant development declined. Increased PPFD also advanced flowering. While photoperiod did not significantly affect the rate of vegetative growth, flowering occurred earliest at intermediate photoperiods and was delayed by extreme photoperiods. These responses suggest that there is potential for adjusting cropping times of raspberry grown under protection by manipulating the environment, especially temperature.

Free access

Yoshiaki Kitaya, Genhua Niu, Maki Ohashi, and Toyoki Kozai

Artificial lighting is widely used in controlled environment plant production to enhance plant growth and quality. However, high light intensity with artificial lighting is costly, and often causes increase of leaf temperature and, thus, leaf burn. We investigated the effects of photosynthetic photon flux (PPF) and photoperiod on the growth and morphogenesis of lettuce plug transplants under ambient and enriched CO2 levels. Three days after seeding, the plants were cultured under four PPF levels (100, 150, 200, and 300 μmol·m–2·s–1), two photoperiods (16 and 24 hr), and two CO2 levels (400 and 800 μmol·mol–1) for 18 days in growth chambers. Light source was fluorescent lamps. The air temperature around the plants was kept at 20°C. The results showed that dry weight of the plants increased linearly as PPF and daily integrated PPF (product of PPF and photoperiod) increased under both CO2 levels. At the same daily integrated PPF, higher CO2 level and longer photoperiod led to higher dry weight of the plants. CO2 enrichment increased significantly dry weight of the plants. The ratio of T/R and specific leaf area of the plants decreased quadratically as daily integrated PPF increased under both CO2 levels. The ratio of leaf length to leaf width of the plants decreased quadratically as PPF increased under the two photoperiods and CO2 levels.

Free access

Gary W. Stutte, Neil C. Yorio, and Raymond M. Wheeler

The effect of photoperiod (PP) on net carbon assimilation rate (Anet) and starch accumulation in newly mature canopy leaves of `Norland' potato (Solanum tuberosum L.) was determined under high (412 ∝mol·m-2·s-1) and low (263 ∝mol·m-2·s-1) photosynthetic photon flux (PPF) conditions. The Anet decreased from 13.9 to 11.6 and 9.3 μmol·m-2·s-1, and leaf starch increased from 70 to 129 and 118 mg·g-1 drymass (DM) as photoperiod (PP) was increased from 12/12 to 18/6, and 24/0, respectively. Longer PP had a greater effect with high PPF conditions than with low PPF treatments, with high PPF showing greater decline in Anet. Photoperiod did not affect either the CO2 compensation point (50 μmol·mol-1) or CO2 saturation point (1100-1200 μmol·mol-1) for Anet. These results show an apparent limit to the amount of starch that can be stored (≈15% DM) in potato leaves. An apparent feedback mechanism exists for regulating Anet under high PPF, high CO2, and long PP, but there was no correlation between Anet and starch concentration in individual leaves. This suggests that maximum Anet cannot be sustained with elevated CO2 conditions under long PP (≥12 hours) and high PPF conditions. If a physiological limit exists for the fixation and transport of carbon, then increasing photoperiod and light intensity under high CO2 conditions is not the most appropriate means to maximize the yield of potatoes.

Free access

Changhoo Chun, Machiko Tominaga, and Toyoki Kozai

We recently showed that spinach (Spinacia oleracea L.) transplants produced under a short photoperiod and low air temperature were characterized by a delay of bolting and short flower-stalk length at harvest (Chun et al., 2000a). The present study was conducted to determine whether these changes are caused by the short photoperiod itself or by the lower integrated photosynthetic photon flux (IPPF). Shoot and root dry weights of transplants increased significantly with increasing IPPF, but were not affected by a change in the photoperiod. However, the floral development indices of transplants were significantly greater under a 16-than under a 10- or 13-hours/day photoperiod, but were not affected by a change in IPPF. The percentage of bolted plants 3 days after transplanting (DAT) increased significantly with increasing photoperiod (from 0% at 10 hours/day to more than 85% at 16 hours/day). Flower-stalk length increased with increasing photoperiod (e.g., at 14 DAT, from 15 mm at the shorter photoperiods to 80 mm at 16 hours/day), but was not affected by a change in IPPF. These results show that the delay of bolting that occurs when the photoperiod is reduced during transplant production is due to the delay of floral development and not to retarded vegetative growth as a result of reduced IPPF.

Full access

Kazuhiro Fujiwara, Toshinari Sawada, Yoshikatsu Kimura, and Kenji Kurata

A light-emitting diode (LED)-low light irradiation (LLI) storage system was developed for suppressing the change in dry weight and maintaining the quality of green plants during long-term storage. In this system, the carbon dioxide (CO2) exchange rate was maintained at zero by automatically adjusting the photosynthetic photon flux density (PPFD) with a proportional-integralderivative (PID) controller. The voltage supplied to the LEDs was controlled by the difference between the inflow (400 μmol·mol-1) and outflow CO2 concentrations in the storage case. Grafted tomato (Lycopersicon esculentum; scion = `House Momotaro'; rootstock = `Anchor T') plug seedlings were stored at 10 °C for 35 days under four different LLI conditions as a system operating test: fixed red light irradiation at 2 μmol·m-2·s-1, PID-controlled red light irradiation with no blue light, and PID-controlled red light irradiation with blue light at 0.2 or 1.0 μmol·m-2·s-1. The results showed that the automatic PPFD control during LED-LLI helped suppress changes in dry weight during storage as expected. Furthermore, it was found that addition of a low percentage of blue light improved the morphological appearance of the seedlings and reduced the PPFD required to suppress the change in dry weight.

Free access

S.R. Adams, P. Hadley, and S. Pearson

The effects of temperature and sowing date on the time to first flowering were investigated in Petunia ×hybrida Vilm `Express Blush Pink' sown on three separate dates (8 Feb., 1 Mar. and 22 Mar. 1993) and grown in glasshouse compartments set to provide six air temperature regimes (minimum temperatures of 4, 10, 14, 18, 22, and 26 °C). Flowering was hastened under high temperatures and sowing later in the season (22 Mar.). To determine the extent to which this seasonal effect was due to photoperiod, a second experiment was conducted where plants were grown under controlled daylengths (8, 11, 14, and 17 h·d-1) within six temperature-controlled glasshouse compartments (set to provide minimum temperatures of 6, 10, 14, 18, 22, and 26 °C). The rate of progress to first flowering increased linearly with lengthening photoperiod up to a critical photoperiod of 14.4 h·d-1, while further increases in daylength had no further affect in hastening flowering. The rate of progress to flowering increased linearly with increasing temperature, however, the optimum temperature, at which the rate of progress to flowering was maximal, was lower under short days compared to long days. Furthermore, the rate of progress to flowering increased linearly with increasing photosynthetic photon flux (PPF). Data from both experiments were analyzed to construct a model to predict the effects of temperature, photoperiod, and PPF on time of flowering in petunia. This model accurately (r 2 = 0.88) predicted the flowering times of a different set of plants sown on three dates and grown under six temperature regimes (6, 10, 14, 18, 22, and 26 °C).

Free access

Craig S. Charron, Daniel J. Cantliffe, Raymond M. Wheeler, Ara Manukian, and Robert R. Heath

To investigate the effects of environment on plant volatile emissions, `Waldmann's Green' leaf lettuce was cultivated under different levels of photosynthetic photon flux (PPF), photoperiod, and temperature. A modified growth chamber was used to sample plant volatile emissions nondestructively, over time, and under controlled conditions. Total volatile emission rates were significantly higher from lettuce cultivated under PPF of 360 or 200 μmol·m-2·s-1 compared to 105 μmol·m-2·s-1, and significantly higher under a 16-h photoperiod than an 8-h photoperiod. No differences were detected among emission rates from different temperature treatments. In controlled environments, emissions could be regulated by adjusting environmental conditions accordingly.