Search Results

You are looking at 11 - 20 of 74 items for :

  • "net assimilation rate" x
  • Refine by Access: All x
Clear All
Open access

Noriko Ohtake, Masaharu Ishikura, Hiroshi Suzuki, Wataru Yamori, and Eiji Goto

growth condition ( Table 2 ; Supplemental Fig. 2 ). Fig. 5. Effects of irradiation patterns on plant growth in Expt. 2. Relative growth rate (RGR), net assimilation rate (NAR), and leaf area ratio (LAR) (data from Fig. 3 ). Cultivation experiment (n = 6

Free access

Cathleen Feser, Rolston St. Hilaire, and Dawn VanLeeuwen

Mexican elder (Sambucus mexicana Presl.) is used in arid landscapes of the Southwest, but the plant is known for its unpredictable performance in those landscapes. We studied drought responses of mexican elder plants grown in an arid environment using an in-ground nursery production system. Plants were maintained as well-irrigated controls or exposed to cyclic drought and irrigated based on evapotranspiration. Drought treatment lasted 165 days. Plants exposed to drought had more negative predawn and midday water potentials than well-watered plants. The ratio of variable to maximal fluorescence (Fv/Fm) for the drought group (0.76), was near the optimum value of 0.8, suggesting that chloroplasts of drought-stressed plants maintained high levels of activity. Drought cycle, but not drought treatment affected stomatal conductance. Drought-stressed plants had lower transpiration rates than controls except at drought cycle five when transpiration rates were similar between irrigation treatments. Relative water content was higher in controls (76%) than plants exposed to drought (66%). Leaf area of well-irrigated plants was over four times higher than that of plants exposed to drought. Leaf area to root dry weight ratio of drought-stressed plants was 79% lower than control plants. Severely reduced leaf area of drought-stressed plants might be one reason why landscape personnel conclude that mexican elder plants perform poorly in arid landscapes.

Free access

Mengmeng Gu, James A. Robbins, Curt R. Rom, and Hyun-Sug Choi

Net CO2 assimilation (A) of four birch genotypes (Betula nigra L. ‘Cully’, B. papyrifera Marsh., B. alleghaniensis Britton, and B. davurica Pall.) was studied under varied photosynthetic photon flux density (PPFD) and CO2 concentrations (CO2) as indicators to study their shade tolerance and potential for growth enhancement using CO2 enrichment. Effect of water-deficit stress on assimilation under varied PPFD and (CO2) was also investigated for B. papyrifera. The light saturation point at 350 ppm (CO2) for the four genotypes varied from 743 to 1576 μmol·m−2·s−1 photon, and the CO2 saturation point at 1300 μmol·m−2·s−1 photon varied from 767 to 1251 ppm. Light-saturated assimilation ranged from 10.4 μmol·m−2·s−1 in B. alleghaniensis to 13.1 μmol·m−2·s−1 in B. davurica. CO2-saturated A ranged from 18.8 μmol·m−2·s−1 in B. nigra ‘Cully’ to 33.3 μmol·m−2·s−1 in B. davurica. Water-deficit stress significantly reduced the light saturation point to 366 μmol photon m−2·s−1 but increased the CO2 saturation point in B. papyrifera. Carboxylation efficiency was reduced 46% and quantum efficiency was reduced 30% by water-deficit stress in B. papyrifera.

Free access

Toshio Shibuya, Ryosuke Endo, Yoshiaki Kitaya, and Saki Hayashi

. The relative growth rate (RGR), relative leaf expansion rate (RLER), net assimilation rate (NAR, dry weight basis), leaf area ratio (LAR), specific leaf area (SLA), and leaf weight ratio (LWR) of cucumber seedlings grown under light with a high red to

Free access

Anke van der Ploeg, Ranathunga J.K.N. Kularathne, Susana M.P. Carvalho, and Ep Heuvelink

in SD. With the dry weight and leaf area observations collected in Expt. 2, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA), and leaf weight ratio (LWR) were calculated over the LD period

Free access

J.C. Palumbo and C.A. Sanchez

Imidacloprid is a new, chloronicotinyl insecticide currently being used to control sweetpotato whitefly [Bemisia tabaci Genn, also known as silverleaf whitefly (Bemisia argentifolii Bellows and Perring)]. Large growth and yield increases of muskmelon (Cucumis melo L.) following the use of imidacloprid have caused some to speculate that this compound may enhance growth and yield above that expected from insect control alone. Greenhouse and field studies were conducted to evaluate the growth and yield response of melons to imidacloprid in the presence and absence of whitefly pressure. In greenhouse cage studies, sweetpotato whiteflies developed very high densities of nymphs and eclosed pupal cases on plants not treated with imidacloprid, and significant increases in vegetative plant growth were inversely proportional to whitefly densities. Positive plant growth responses were absent when plants were treated with imidacloprid and insects were excluded. Results from a field study showed similar whitefly control and yield responses to imidacloprid and bifenthrin + endosulfan applications. Hence, we conclude that growth and yield response to imidacloprid is associated with control of whiteflies and the subsequent prevention of damage, rather than a compensatory physiological promotion of plant growth processes. Chemical names used: 1-[(6-chloro-3-pyridinyl)methyl]-4,5-dihydro-N-nitro-1-H-imidazol-2-amine (imidacloprid); [2 methyl(1,1′-biphenyl)-3yl)methyl 3-2-chloro-3,3,3-trifluoro-1-propenyl]-2,2-dimethylcyclopropane carboxylate (bifenthrin); 6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodiaxathiepin 3-oxide (endosulfan).

Free access

Krishna S. Nemali and Marc W. van Iersel

Physiological acclimation of plants to light has been studied mostly at the leaf level; however whole-plant responses are more relevant in relation to crop growth. To examine the physiological changes associated with different daily light integrals (DLI) during growth of wax begonia (Begonia semperflorens-cultorum Hort.), we grew plants under DLI of 5.3, 9.5, 14.4, and 19.4 mol·m-2·d-1 in a whole-plant gas exchange system. Photosynthesis-light response curves of groups of 12 plants were determined after 25 d of growth. Physiological parameters were estimated per m2 ground area and per m2 leaf area. On a ground area basis, significant increases in dark respiration (Rd), quantum yield (α), the light compensation point (LCP), and maximum gross photosynthesis (Pg,max) were seen with increasing DLI. Variations in physiological parameters among different treatments were small when corrected for differences in leaf area. On a leaf area basis, α, LCP, and the light saturation point (LSP) did not change significantly, whereas significant increases in Rd and Pg,max were seen with increasing DLI. There was a small decrease in leaf chlorophyll concentration (6.3%, measured in SPAD units) with increasing DLI. This study indicates that wax begonias acclimate to low DLI by increasing their leaf chlorophyll concentration, presumably to more efficiently capture the available light, and to high DLI by increasing Pg,max to efficiently utilize the available light, thereby maximizing carbon gain under both situations.

Free access

Takanori Kuronuma and Hitoshi Watanabe

rate (RGR) with physiological [net assimilation rate (NAR)] and morphological [leaf area ratio (LAR)] traits ( Lambers et al., 1989 ), which have a mathematical relationship (RGR = NAR × LAR). In addition, growth analysis provides a more informative

Free access

Dean E. Knavel and Robert L. Houtz

Plants of Main Dwarf, a short-internode mutant of the normal-internode `Mainstream' muskmelon (Cucumis melo L.), have shorter internodes, fewer nodes, less total vine length, less total dry weight, smaller leaves, increased chlorophyll concentrations, increased specific leaf dry weight, and increased ribulose-1, 5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39, rubisco) activity per unit leaf area than `Mainstream' plants. Main Dwarf plants produce an equal number of fruit as `Mainstream' plants but are only half their size. Many of the plant and fruit characteristics for F1(Main Dwarf × `Mainstream') are similar to those of `Mainstream', except for greater leaf chlorophyll and rubisco activity per unit leaf area. The F1 (`Mainstream' × Main Dwarf) produced fewer and lower weight fruit than its reciprocal, F1 (Main Dwarf × `Mainstream').

Free access

Jun Zhu, Duane P. Bartholomew, and Guillermo Goldstein

Despite the potential impact of rising global CO2 levels, only a limited number of studies have been conducted on the effects of ambient and elevated CO2 on plants having Crassulacean acid metabolism (CAM). To our knowledge, there are no studies for pineapple [Ananas comosus (L.) Merr.], the most commercially important CAM plant. Pineapple plants were grown at CO2 levels of ≈330 (ambient) and ≈730 (elevated) μmol·mol-1 in open-top chambers for 4 months. The mean air temperature in the chambers was ≈39 °C day/24 °C night. Average plant dry mass at harvest was 180 g per plant at elevated CO2 and 146 g per plant at ambient CO2. More biomass was partitioned to stem and root but less to leaf for plants grown at elevated CO2; leaf thickness was 11% greater at elevated than at ambient CO2. The diurnal difference in leaf titratable acidity (H+) at elevated CO2 reached 347 mmol·m-2, which was up to 42% greater than levels in plants grown in ambient CO2. Carbon isotopic discrimination (Δ) of plants was 3.75% at ambient CO2 and 3.17% at elevated CO2, indicating that CO2 uptake via the CAM pathway was enhanced more by elevated CO2 than uptake via the C3 pathway. The nonphotochemical quenching coefficient (qN) of leaves was ≈45% lower in the early morning for plants grown at elevated than at ambient CO2, while afternoon values were comparable. The qN data suggested that the fixation of external CO2 was enhanced by elevated CO2 in the morning but not in the afternoon when leaf temperature was ≥40 °C. We found no effect of CO2 levels on leaf N or chlorophyll content. Pineapple dry matter gain was enhanced by elevated CO2, mainly due to increased CO2 dark fixation in environments with day temperatures high enough to suppress C3 photosynthesis.