Search Results

You are looking at 11 - 20 of 650 items for :

  • "meristems" x
  • Refine by Access: All x
Clear All
Full access

Tomomi Eguchi and Chieri Kubota

end and cotyledons, and usually they grew in clumps ( Fig. 1C ), unlike the axillary shoots developed from cotyledons ( Fig. 1A ). The adventitious shoot development was presumably because of the lack of active apical and axillary meristems that

Free access

Michael R. Evans, Harold F. Wilkins, and Wesley P. Hackett

The poinsettia [Euphorbia pulcherrima (Willd. ex. Klotzsch)] is a short-day plant (SDP) for floral initiation that will also initiate floral structures (cyathia) under long days (LD) after the apical meristem produces a cultivar-dependent number of nodes (long-day node number). Leaf removal, root restriction, and air layering failed to affect the long-day node number (LDNN) of the apical meristem. Repeated rooting of shoots, which resulted in the removal of nodes, did not affect the total number of nodes initiated by the apical meristem before floral initiation, although the number of nodes intact on the plant at the time of floral initiation was reduced. Reciprocal grafting of axillary buds of `Eckespoint Lilo' and `Gutbier V-14 Glory' plants did not affect the LDNN of the grafted meristem since the LDNN was the same as for nongrafted buds of the same cultivar. Further, grafting axillary buds from different positions along the main axis that differed in LDNN did not affect the LDNN of the grafted meristems. On the basis of these results, it was concluded that LD floral initiation in poinsettia is a function of the ontogenetic age of the meristem and that the LDNN represents a critical ontogenetic age for floral initiation to occur under LD.

Free access

Stan C. Hokanson, Kelvin G. Grant, Elizabeth L. Ogden, and Lisa J. Rowland

Commercial strawberry plantings in the mid-Atlantic region are often quickly infected with one or more aphid-transmitted viruses, resulting in the loss of plant vigor, stunting, lowered yields, etc. To produce virus-free plant material for the strawberry industry and for cultivar development programs, heat therapy and/or meristem tip culture protocols are generally employed. One of the problems associated with meristem culturing is the potential for somaclonal mutations to occur in the meristem or surrounding proliferating tissue. As a result, distinct “bud lines” displaying functionally insignificant to distressingly high levels of phenotypic variation can arise from individual meristems. It would be desirable to differentiate these off-types by genetic fingerprinting to maintain trueness-to-type. Randomly amplified polymorphic DNA (RAPD) markers were evaluated for the potential to differentiate six pairs of strawberry bud lines that exhibit slight to fairly extreme levels of phenotypic variation. Reproducible RAPD marker profiles were generated using 10 primers in amplification reactions with genomic DNA obtained from multiple extractions. While five of the bud line pairs remained indistinguishable, three primers distinguished two variants of the Mohawk cultivar that are now in existence in the strawberry industry. Results suggest that typical somaclonal variation produced in the meristem culture process is of a magnitude that is not readily detectable with the RAPD protocol. The two Mohawk lines were probably produced by a higher magnitude mutation event than generally occurs or a cultivar mix-up.

Free access

Denise Duclos and Thomas Björkman

The genetic factors that control reproductive development in B. oleracea remain a mystery. Broccoli differs from cauliflower in its floral development stage at harvest. We are studying the role of meristem identity genes (MIGs) in the transition from inflorescence meristem (cauliflower) to floral buds (broccoli). The objectives are to determine stage-specific roles of MIGs during reproductive development and to check whether expression of flowering genes in heading B. oleracea is as predicted by the Arabidopsis flowering model. We tested a model of arrest in B. oleracea that incorporates FUL, a redundant gene of AP1 in controlling inflorescence architecture and floral meristem identity, the meristem gene TFL1, the flowering gene LFY, and AP1/CAL, and genes involved in flower transition. Conclusions. 1) Arrest at the inflorescence meristem stage is highly correlated with a decrease in LFY to TFL1 ratio, given by a decrease in TFL1 expression. 2) Transcription of AP1c is stimulated at the time of floral primordium initiation, suggesting a role in floral transition but not in floral organ specification. Plants recessive for AP1a, AP1c, and CAL formed normal floral buds containing all four whorls of organs, and did not necessarily form curd. We suggest that their ability to flower could be related with the ectopic expression of FUL by affecting TFL1 expression. FUL paralogs were highly expressed at all stages of development of the triple mutant plants. 3) The lack of upregulation in AP1 transcripts at the floral bud stage, and the absence of an A-function mutant phenotype imply that other genes act redundantly with AP1 in the specification of sepal identity and questions the role of AP1a and AP1c as A-function genes in B. oleracea.

Free access

Richard K. Schoellhorn, James E. Barrett, Carolyn A. Bartuska, and Terril Nell

Effects of heat stress on viable and nonviable axillary meristem development and subsequent lateral branching in 'Improved Mefo' chrysanthemum [Dendranthema ×grandiflorum Ramat. (Kitamura)] were studied. Plants grown at 33 °C day/27 °C night produced more nonviable buds than did plants grown at 23 °C day/18 °C night. A negative linear relationship {y = 28.7 + [-0.66 (x days)], r 2 = 0.70} between timing of exposure to high temperatures and the number of nonviable buds was observed. Histological examination 28 days after exposure to 33 °C/27 °C revealed that plants showed both normal and abnormal bud development. Abnormal bud development occurred as a consequence of premature differentiation of axillary meristematic tissue into nonmeristematic parenchyma tissue immediately after separation of axillary from apical meristems.

Free access

Barbara M. Reed

Apical meristems of four pears (Pyrus communis L. cv. Beurre Hardy, P. koehnei Schneider, P. cossonii Coss. and Dur., and a hybrid, P. dimorphophylla Makino × P. fauriei Schneider) were tested for their ability to survive immersion in liquid nitrogen. Plantlets were grown in vitro at 25C or cold-hardened for 1 week at – 1C before cooling at rates of 0.1, 0.3, 0.5, and 0.8 C/rein to –40C, followed by plunging the vials into liquid nitrogen. Vials were thawed for 1 min at 40C. A cryoprotectant mixture of polyethylene glycol, glucose, and dimethylsulfoxide (DMSO) was used. Regrowth of meristems ranged from 0% to 61% for plants grown at 25C and from 5% to 95% for cold-hardened plants. Cold-hardening significantly improved the recovery rates of all species tested. Survival rates increased as cooling rates decreased. Survival rates were not linked to the geographic origin of the species tested.

Free access

Richard K. Schoellhorn, James E. Barrett, and Terril A. Nell

`Improved Mefo' chrysanthemums were grown at 22C/18C and 34C/28C day/night temperature regimes to evaluate the failure of lateral bud development following pinching of this temperature sensitive cultivar. The number of viable buds on plants at the high temperatures was 40% of number at low temperature. Loss of bud viability was categorized as those buds that were: 1) absent, or 2) those in which growth was present, but inhibited. Inhibited buds were visible swellings surrounded by dense masses of secondary cell wall material. Anatomical studies were completed to verify the absence of lateral buds and determine what cellular changes imposed inhibition on those buds that did develop. A second group of experiments demonstrated that moving low-temperature plants to the high temperature caused production of viable buds to decline. Plants were moved from high temperatures to low, and reciprocally to high from low temperature. Anatomical sampling of apical meristems began at time of shift and at 1, 2, 4, and 8 days after temperature shift. High-temperature meristems possessed predominantly non-viable lateral buds, with few viable buds present.

Free access

Bradley Dotson*, Camila Rey, Joonyup Kim, and Sara Patterson

Cell separation regulates basic developmental processes such as abscission and dehiscence and is one of the horticultural traits first to be selected by mankind. Abscission is characterized by an active cell separation process where organs are detached from the main body of the plant through the dissolution of the middle lamella. Crops with early abscission can have significant reduction in yield. For example, canola, Brassica napus, loses 5% to 10% of crop due to early pod shatter. By screening T-DNA mutagenized populations of A. thaliana for delayed abscission, we have identified several genes that regulate cell separation, slm1-1 (slender lasting inflorescence and meristem) is one such genes. During our investigation of slm1-1 we have employed phenotypic, physiological, genetic, and molecular assays. Phenotypically, slm1-1 displays traits such as delayed abscission of floral organs, lack of anther pollen dehiscence (making slm1-1 functionally male sterile), delayed meristem arrest, and strong apical dominance. Phenotypic characterization includes scanning electron microscopy, bright field microscopy, and stereoscope microscopy. Physiological assays include reporter gene expression and break strength analyses. Genetically, slm1-1 is regulated by a single recessive gene. Molecular assays characterizing slm1-1 include TAIL-PCR, RT-PCR, and preliminary microarray of abscission zones. We have also begun to map based cloning of slm1-1. We believe that understanding genes that regulate cell separation in A. thaliana will contribute to crop improvement. Applications could include reducing loss during harvesting, regulation of pollination, changes in branching patterns, and longevity of flowering.

Free access

Nilvane T.G. Müller, Gerson R. de L. Fortes, Gioconda C. Nascimento, and Julio Daniels

Garlic (Allium sativum L.) belongs to the Alliaceae family and originated from Asia and Mediterranean countries. Their bulblets are rich in starch and aromatic substances. The rate of garlic propagation in field conditions takes several years for the production of a certain number of seed bulbs for the release of a new variety. The use of tissue culture techniques is a useful tool for overcoming this problem. The aim of this work was to increase the mean number of shoots derived from the meristem isolation and to verify the percentage of callus formation and to analyze vigor of the material. The initial meristems were inoculated in a salt and vitamin B5 media except for the iron element, which was provided by MS medium added to in mg·L-1: myo-inositol (100.0), nicotinic acid (1.0), piridoxine (1.0), thiamine (10.0), sucrose (20.0 g·L-1), agar (6.0 g·L-1). BAP and TDZ were added at: 0.0; 1.0; 1.5; 2.0; and 2.5 μM This material remained in a growth room for a 16-h photoperiod, radiation of 20 μMol·m-2·s-1 and 25 °C for 40 days. Although `Sao Marcos' produced more vigorous shoots, no significant difference was found for the mean number of shoots. `Sao Valentim' cultivar shows more callus at the shoot base, making this cultivar more prone to somaclonal variation On the other hand, BAP estimulates the appearance of callus, but it has been shown that this is cultivar-dependent.

Free access

Daniel L. Ward and Bradley H. Taylor

G A3 sprays were applied to 10 primary scaffold limb replications with a handgun at three concentrations (25, 50, 100 mg/l), from May to September 1989. Flower bud thinning with G A3 applied in the year prior to bloom was examined for its effect on the developmental fate of lateral meristems. Limbs treated in late May had, on average, 45% more flower buds survive near-critical winter temperatures than did controls. During the period of greatest sensitivity to Flower Bud Density (FBD) reduction, GA3 treated limbs had vegetative bud densities (VBD) higher than control (on average 45% greater at 100 mg/l). On 9 June 100 mg/l reduced FBD by 78% compared to control and increased VBD by 57%, while on 6 July the same concentration. reduced FBD by 94% but VBD was increased by only 32%. These results appear to support the hypothesis that GA3 induced FBD reduction has more than one mode of action.