Search Results

You are looking at 11 - 15 of 15 items for :

  • "glycolipid" x
  • Refine by Access: All x
Clear All
Free access

Ehiorobo Izekor and James O. Garner Jr.

Selected physiological and anatomical characteristics of four chilling-tolerant sweetpotato genotypes were evaluated. Although the genotypes were considered highly tolerant to chilling, it was proposed that differences in their mechanism for tolerance existed. A genotype temperature interaction for chlorophyll fluorescence ratio was observed when the plants were exposed to 5 °C. Genotype differences were found for electrolyte leakage and peroxidase activity. There were no differences found for fatty acid percentage composition of the glycolipid or the phospholipid fraction from leaf samples. There were no differences in diffusive resistance and transpiration rate among the genotypes; however, stomata density, leaf shrinkage, and specific leaf weight differed among the genotypes. Differences were also found among the genotypes for percent leaf dry weight, leaf thickness, and cellular structure of the leaf. It was concluded that the basis or mechanism for chilling tolerance was not the same for the four genotypes tested; therefore, combining traits for tolerance could lead to higher tolerance levels.

Free access

Bruce D. Whitaker

Altered metabolism of membrane lipids has been proposed as a mechanism for the beneficial effects of postharvest calcium treatment on apple quality. A previous study showed that after transfer of apples stored 6 months at 0C to 20C, calcium-treated fruit exhibited slower loss of galactolipid and altered levels of sterol conjugates. The present study of lipids in “control” fruit was conducted as a prelude to further in-depth analyses of the effects of postharvest calcium and heat treatments on lipid metabolism in apples during and after cold storage. Neutral lipid, glycolipid (GL), and phospholipid (PL) fractions were obtained by column chromatography followed by TLC separation of GL and PL classes. The major GL were steryl glycosides (SG), acylated steryl glycosides (ASG), cerebrosides (CB), and mono- and digalactosyl diacylglycerols. Phosphatidylcholine (PC) > P-ethanolamine (PE) > P-irositol (PI) were the major PL. The fatty acids of PC and PE were quite similar, whereas those of PI were more saturated. CB included only 2-hydroxy fatty acids. Among the steryl lipids, free sterols > SG > ASG, with beta-sitosterol >90% of the total sterol in each.

Free access

Shiow Y. Wang and Gene J. Galletta

The effect of silicon (Si) foliar applications on metabolic changes and powdery mildew infection in strawberry plants were determined. Silicon was used in the forms of potassium (K) and sodium (Na) salts. Foliar sprays containing 0, 250, 500, 750, and 1000 ppm of Si were applied. Strawberry plants showed no difference in response to the K or Na salts of Si during the seven weeks of experimental period. Plants treated with potassium and sodium silicate showed reduced severity of powdery mildew, increased chlorophyll content, and increased plant growth. Potassium and sodium silicate treatments also induced metabolic changes such as an increase in citric acid and malic acid levels, and a decrease in fructose, glucose, sucrose, and myoinositol content. The treated tissues also had higher ratios of (18:2 + 18:3)/18:1 in glycolipids and phospholipids and elevated amounts of membrane lipids in leaves and petioles. These results suggest that Si has beneficial effects on strawberry plants and may serve as an alternative to fungicides for controlling powdery mildew.

Open access

Aneela Nijabat, Adam Bolton, Muhammad Mahmood-ur-Rehman, Adeel Ijaz Shah, Rameez Hussain, Naima Huma Naveed, Aamir Ali, and Philipp Simon

membrane stability and membrane stabilizing factors such as osmolyte concentration (proline) and saturated structural lipids (phospholipids and glycolipids) to better understand the heat-tolerance mechanism in carrot germplasm. Table 3. Descriptive

Free access

Cristina Pisani, Mark A. Ritenour, Ed Stover, Anne Plotto, Rocco Alessandro, David N. Kuhn, and Raymond J. Schnell

acids composition of avocado during harvesting time and post-harvesting ripening period Food Chem. 86 79 83 Pacetti, D. Boselli, E. Lucci, P. Frega, N.G. 2007 Simultaneous analysis of glycolipids and phospholipids molecular species in avocado ( Persea