Search Results

You are looking at 11 - 20 of 43 items for :

  • "anaerobiosis" x
  • Refine by Access: All x
Clear All
Open access

Steven T. McNamara and Cary A. Mitchell

Abstract

Tomato accessions PI 128644 (Lycopersicon peruvianum var. dentatum Mill.) and PI 406966 (L. esculentum Mill.) were identified in preliminary screening trials as being relatively nonresistant and resistant to root-zone flooding, respectively. A comparative study of these accessions was undertaken to examine adaptive responses to inundation. Root and shoot growth of both accessions were inhibited by 120 hr of flooding. Aerobic respiratory capacity of secondary roots of both accessions decreased to a similar extent after 24 hr of inundation. Flooding did not significantly affect anaerobic root respiration rate of either accession. Stomatal conductance decreased after 24 hr of flooding for both accessions, with some recovery by PI 406966 after 168 hr of treatment, coinciding with development of adventitious roots on lower stems. Few adventitious roots formed on flooded PI 128644 plants. Leaf water potential of both accessions initially increased as a result of flooding, but declined to near control level by 120 hr of treatment. Total phenol content of PI 128644 roots decreased with 72 hr of flooding, while that of PI 406966 roots was not significantly affected. Factors underlying the greater resistance of PI 406966 to flooding remain unclear, but may include a lower root respiratory requirement for O2 and greater ability to sequester or eliminate toxic substances during inundation.

Free access

James Mattheis and John K. Fellman

The commercial use of modified atmosphere packaging (MAP) technology provides a means to slow the processes of ripening and senescence during storage, transport, and marketing of many fresh fruit and vegetables. The benefits of MAP and controlled atmosphere (CA) technologies for extending postharvest life of many fruit and vegetables have been recognized for many years. Although both technologies have been and continue to be extensively researched, more examples of the impacts of CA on produce quality are available in the literature and many of these reports were used in development of this review. Storage using MAP, similar to the use of CA storage, impacts most aspects of produce quality although the extent to which each quality attribute responds to CA or modified atmosphere (MA) conditions varies among commodities. Impacts of MAP and CA on flavor and aroma are dependent on the composition of the storage atmosphere, avoidance of anaerobic conditions, storage duration, and the use of fresh-cut technologies before storage.

Free access

Thomas G. Beckman, Ronald L. Perry, and James A. Flore

The effects of short-term soil flooding on gas exchange characteristics of containerized sour cherry trees (Prunus cerasus L. cv. Montmorency /P. mahaleb L.) were studied under laboratory conditions. Soil flooding reduced net CO2 assimilation (A) within 24 hours. Net CO2 assimilation and residual conductance to CO2(gr′) declined to ≈30% of control values after 5 days of flooding. Effects on stomatal conductance to CO2 (gS) and intercellular CO2 (Ci) were not significant during the 5 days of treatment. Apparent quantum yield (Φ) gradually declined to 52% that of controls during these 5 days. In a second experiment, CO2 response curves suggested that, initially, stomatal and nonstomatal limitations to A were of about equal importance; however, as flooding continued, nonstomatal limitations became dominant.

Free access

Francesco Di Gioia, Monica Ozores-Hampton, Jason Hong, Nancy Kokalis-Burelle, Joseph Albano, Xin Zhao, Zack Black, Zhifeng Gao, Chris Wilson, John Thomas, Kelly Moore, Marilyn Swisher, Haichao Guo, and Erin N. Rosskopf

commercial level, to define and validate a feasible field-scale ASD application procedure. The main factors affecting the level of anaerobiosis and low pH achievable, as well as the microbial type and population growth, and the maintenance of reducing

Free access

Kirk D. Larson, Bruce Schaffer, and Frederick S. Davies

One-year-old potted `Peach' mango (Mangifera indica L.) trees were flooded at soil temperatures of 15, 22.5 or 30°C. Hypertrophied lenticels were observed after 5-6 days at 30°C and 6-8 days at 22.5°C, but were not observed after 30 days at 15°C. Cells of hypertrophied lenticels were more spherical and randomly arranged than those of nonhypertrophied lenticels, resulting in increased intercellular airspace. Lenticel hypertrophy also occurred on sterns of trees which were kept moist from intermittant misting, and on excised and intact stem sections. Therefore, formation of hypertrophied lenticels in mango occurs independently of root anaerobiosis and is dependent on floodwater temperature.

Free access

George D. Nanos, Roger J. Romani, and Adel A. Kader

The response of pear fruits and suspension-cultured pear fruit cells to 0% or 0.25% O2 is being examined to evaluate the feasibility of using such atmospheres for postharvest insect control. These treatments inhibited ethylene production, had no effect on acetaldehyde content, and increased ethanol production in pears kept at 20C for 10 days. The blossom end area of pear fruits was more prone to anaerobiosis, as indicated by increased alcohol dehydrogenase activity and ethanol content. Pear fruit plugs showed increased respiration and ethylene production rates when skin was present compared to plugs without skin. Methods for measuring activity of alcohol dehydrogenase, pyruvate decarboxylase, and pyruvate kinase have been modified and optimized and will be used to determine changes in pear fruit tissue during low O2 treatment and subsequent recovery in air.

Open access

Mikal E. Saltveit Jr. and Walter E. Ballinger

Abstract

The ethanol concentration of ‘Carlos’ grapes (Vitis rotundifolia Michx.) increased linearly with time (1 to 4 hours) and exponentially with temperature (0° to 30°C) during exposure to an anaerobic N2 or CO2 atmosphere. Ethanol loss from grapes placed in air after 4 hours in CO2 was dependent on the concentration of ethanol accumulated during anaerobiosis. Fruit quality was unaffected by 0° exposure to an anaerobic CO2 atmosphere for up to 72 hours after 6 hours in CO2 at 30°. However, 30 hours in a CO2 atmosphere at 30° reduced fruit quality. An equation was derived to calculate ethanol accumulation during cooling of warm fruit under anaerobic atmospheres.

Free access

P. Kataki and A.G. Taylor

The production of ethanol under anaerobic and aerobic conditions is suggested as a sensitive indicator of seed aging. Seeds of sweet corn (Zea mays L. `Jubilee') and lettuce (Lactuca sativa L. `Salinas') were aged at 75% relative humidity and 45C to obtain five aged seed lots and compared to a nonaged control sample. The percent germination decreased while percent abnormal seedlings initially increased with seed aging. Anaerobic treatments were induced either by immersing seeds in distilled water for sweet corn or in a solution of 50 mM glucose and 5 mM KPO4 buffer adjusted to pH 5.6 for lettuce. Aerobic treatments were performed by placing seeds in a plastic chamber filled with a known amount of glass beads sufficiently moistened to allow imbibition. Ethanol was measured after 12 and 24 hours from lettuce and sweet corn, respectively. Aqueous extracts were analyzed by immobilized enzyme technology and verified by gas chromatography. Anaerobiosis induced large amounts of ethanol production compared to aerobic treatments. The amount of ethanol decreased with seed aging duration under anaerobic conditions while these trends were generally reversed under aerobic conditions. The ratio of ethanol produced under anaerobic compared to aerobic conditions was best able to separate differences in seed quality due to aging.

Free access

J.P. Mattheis and D.A. Buchanan

Apple fruit storage lie is prolonged by low-oxygen cold storage, however, ethanol accumulates when oxygen concentration is reduced below the Pasteur point, Upon return to aerobic conditions, dissipation of ethanol occurs due to physical (evaporation) and biochemical processes. Oxidation of ethanol by apple fruit occurs at a slow rate, but ethanol also serves es a substrate for fruit volatile synthesis. This study was conducted to determine changes in concentrations of ethanol and other non-ethylene apple fruit volatiles following periods of anaerobiosis. `Delicious' apples were obtained from a commercial warehouse and stored at 0.05% O2, 0.2% CO2 and 1 C. One day following return to ambient oxygen conditions, several volatiles were identified from anaerobic fruit that were nor produced by the control fruit. All were eaters that contained an ethyl group as the alcohol-derived portion, These included ethyl acetate, ethyl butyrate, ethyl 2-methyl butyrate, ethyl hexanoate and ethyl octanoate. Several esters produced by the controls were not detectable from anaerobic fruit including butyl butyrate, butyl 2-methyl butyrate, propyl hexanoate and 3-methyl butyl hexanoate. After 7 days ripening at 20 C, the amount of ethanol and the additional ethylesters was reduced in anaerobic fruit. Synthesis of esters produced by control fruit but nor by anaerobic fruit during the initial volatile sampling had resumed after 7 days.

Free access

Takaya Moriguchi and Roger J. Romani

A strong association is implicit between mitochondrial function and the energy demands of cells responding to stress. Yet, the dynamics of this organelle-cellular dependency have been difficult to resolve. This study examines a new diagnostic parameter namely, mitochondrial maintenance and self-restoration as exhibited by the course of respiratory functions (states 3 and 4 respiratory rates, respiratory control) of mitochoudria extracted during and after exposure of intact `Hass' avocado (Persea americana) fruit to different stress atmospheres: anoxia (100% N2) or high (25% and 75%) CO2 for varying durations. Comparisons are made with direct exposure of the mitochondria themselves to similar atmospheres. In general, exposure of the fruit to CO2 rich atmospheres enhanced the capacity of their mitochondria to restore energy-linked functions whereas anoxia caused irreparable damage. The physiological (climacteric) state of the fruit also affected the stress capacity of the mitochondria contained therein, anaerobiosis being more harmful to mitochondria in riper fruit. In contrast to their effects in vivo, in vitro anoxia appeared to sustain mitochondrial energy-linked functions, whereas high CO2 was clearly harmful. These and other observations are discussed in the context of mitochondrial self-restoration or homeostasis and its relevance to postharvest stress-atmosphere storage for purposes such as pathogen suppression or insect control.