Search Results

You are looking at 11 - 20 of 50 items for :

  • "Xanthomonas campestris pv. vesicatoria" x
  • Refine by Access: All x
Clear All
Full access

Brent Rowell, R. Terry Jones, William Nesmith, and John C. Snyder

Bacterial spot epidemics, caused by Xanthomonas campestris pv. vesicatoria (Doidge) Dye, continue to plague bell pepper (Capsicum annuum L.) growers in a number of southern and midwestern states. A 3-year study designed to compare cultivars and breeding lines under induced bacterial spot epidemic and bacterial spot-free conditions began soon after the first release of cultivars having the Bs2 gene for resistance to races 1 to 3 of the pathogen. Bacterial spot epidemics were created by transplanting `Merlin' plants (inoculated with races 1 to 3) into plots of each test cultivar at an isolated location in eastern Kentucky. Plots of the same trial entries at a second location were kept free of bacterial spot for 2 of the 3 years of trials; however, a moderate natural epidemic occurred at this location in 1996. Bacterial spot resistance had the greatest impact on yields and returns per acre in the inoculated trials. Cultivars with only Bs1 or a combination of Bs1 and Bs3 were highly susceptible in the inoculated trials. There were statistically significant and economically important differences in resistance among cultivars and breeding lines having the Bs2 gene; some were nearly as susceptible as susceptible checks. Although many Bs2-gene cultivars showed satisfactory levels of resistance, only a few were highly resistant, horticulturally acceptable, and comparable in yields to the best susceptible hybrids in a bacterial spot-free environment.

Free access

C.S. Kousik, D.C. Sanders, and D.F. Ritchie

The impact of a single hail storm injury in combination with bacterial spot caused by Xanthomonas campestris pv. vesicatoria was assessed on three commercial pepper (Capsicum annuum) cultivars—King Arthur, Jupiter, and Rebell. In addition, the effectiveness of copper plus maneb sprays on hail-damaged plants to suppress bacterial spot was evaluated. A hail storm of ≈5-min duration severely damaged and defoliated the pepper plants. Severe bacterial spot was observed 10 days later on all plants. Disease ratings taken 2 weeks after the hail storm were significantly greater than ratings before the storm. Unsprayed plots of all three cultivars had the greatest disease and the least yield. Plots sprayed weekly (7-day schedule) had a significantly greater yield and less disease compared to unsprayed and biweekly sprayed (14-day schedule) plots for all three cultivars. The combination of hail damage and bacterial spot resulted in a 6-fold reduction in yield in the absence of copper plus maneb sprays and a 2-fold reduction with weekly sprays when compared to the previous season with no hail injury, but similar levels of bacterial spot disease. Disease ratings were less and yields were greater for `King Arthur', than for `Jupiter' and `Rebell'. A judicious copper plus maneb spray program can suppress bacterial spot and help recovery of a young pepper crop when hail damage occurs.

Free access

J.W. Scott, S.A. Miller, R.E. Stall, J.B. Jones, G.C. Somodi, V. Barbosa, D.L. Francis, and F. Sahin

Thirty-two tomato (Lycopersicon esculentum Mill.) or L. pimpinellifolium (L.) Mill. accessions were inoculated with race T2 of Xanthomonas campestris pv. vesicatoria (Xcv) in a field experiment at Wooster, Ohio, in 1995. Plants from accessions which segregated for race T2 resistance in greenhouse tests were selected and these are designated by hyphenated extensions below. The eight most resistant accessions from 1995 and PI 262173 were retested in 1996. Lycopersicon esculentum accession PI 114490-1-1 had virtually no Xcv symptoms either year. Lycopersicon pimpinellifolium accessions LA 442-1-Bk and PI 128216-T2 expressed a high level of resistance in 1995, but only partial resistance in 1996. Accessions with partial resistance for both seasons were PI 79532-S1, PI 155372-S1, PI 126428, PI 271385, PI 195002, PI 262173, Hawaii 7998, and Hawaii 7983. PI 79532-S1 is a L. pimpinellifolium accession and the remaining seven are L. esculentum. Twenty accessions tested in 1995 for T2 plus 10 other accessions were also tested for race T1 resistance in Presidente Prudente, Sao Paulo, Brazil, in 1993. Hawaii 7983, PI 155372-S1, PI 114490, PI 114490-S1, and PI 262173 had greater resistance to T1 than the susceptible control, `Solar Set'. Comparisons with earlier experiments, in which accessions were inoculated with race T1 or T3, indicated that the most consistent source of resistance to all three races was PI 114490 or selections derived from it.

Free access

Harold A.A. Gibbs

Xanthomonas campestris pv. vesicatoria (Xcv) recovered from Commelina benghalensis L., caused bacterial spot disease in cultivars of pepper and tomato susceptible to the pathogen. This is the first reported case of a dicot-infecting Xc pathovar infecting a monocot plant, represented here by a member of the Family Commelinaceae. Laboratory strains of the pathogen that included 81-23, 81-23M13, 82:4, 2595, and P6AD4, known to be pathogenic to pepper and tomato, promoted bacterial spot symptoms on leaves of C. benghalensis L. Of the 63 field isolates recovered from infected C. benghalensis L., 30 gave biochemical and physiological reactions consistent with Xcv pathogens, whereas 10 of the latter promoted bacterial spot disease in the test cultivars resulting in the identification of seven pathogenic races, including P2, P5, P6, P5T1, P5T2, P6T2, and P6T3. Bacterial spot disease symptoms developed on stems only when C. benghalensis L. was spray-inoculated with strains 81-23, 81-23M13, and P6AD4. Bacterial concentration increased in planta by as much as 103 per lesion of the leaf, whereas growth of the same strains was restricted in the stem of this weed. Growth of these three strains was, however, significantly (P ≤ 0.05) lower on NYGA amended with C. benghalensis L. stem extract than on NYGA amended with leaf extract. The ability of the bacterial spot pathogen to infect the stem of C. benghalensis L. has serious implications for management of bacterial spot disease in fields populated with this weed since stems of this plant infected with the pathogen continue to grow vegetatively and disperse throughout all fields in which it is found.

Free access

J.W. Scott, J.B. Jones, and G.C. Somodi

Hawaii 7981 tomato (Lycopersicon esculentum Mill.), resistant to race T3 of the bacterial spot pathogen [Xanthomonas campestris pv. vesicatoria (Doidge) Dye], was crossed to the susceptible tomato inbred, Fla. 7060, and subsequently F2 and backcross seed were obtained. These generations were planted in the field, inoculated with the race T3 pathogen and evaluated for disease severity over two summer seasons. Data were tested for goodness-of-fit to a model based on control by the incompletely dominant gene Xv3 that confers hypersensitivity. The F1 was intermediate in disease severity to the parents for both seasons. When data were combined over both seasons, the backcrosses fit the expected 1:1 ratios although each deviated from the expected ratio in one of the 2 years tested. The F2 did not fit the expected 1:2:1 ratio in either year or when data from the two years were combined due to a deficiency of resistant plants. Thirty-three F2 plants representing an array of disease severities and hypersensitivity reactions were selected in the second season and their F3 progeny were inoculated and evaluated for disease severity. Hawaii 7981 was significantly more resistant than the 12 most resistant F3 selections even though all expressed hypersensitivity. A hypersensitive F3 with intermediate field resistance was crossed to Hawaii 7981 and subsequently, F2 and backcross generations were obtained. These generations were field inoculated with the race T3 pathogen and evaluated for disease severity. Hawaii 7981 was significantly more resistant than the F3 parent as in the previous year. The data did not fit an additive-dominance model and epistatic interactions were significant. Thus, it appears that field resistance to race T3 of bacterial spot found in Hawaii 7981 is conferred quantitatively by Xv3 and other resistance genes. Breeding implications are discussed.

Free access

Charles S. Vavrina, Pamela D. Roberts, Nancy Kokalis-Burelle, and Esa O. Ontermaa

Six greenhouse trials of five commercial products marketed as systemic resistance (SR) and plant growth promotion (PGP) inducers were evaluated on tomato (Lycopersicon esculentum Mill.) over a 21-month period. The effect of the inducers on treated plants was measured by monitoring plant growth and disease suppression after inoculation with either plant pathogenic bacteria or nematodes. The commercially available SR/PGP inducers included a bacterial suspension [Companion (Bacillus subtilis GB03)], two plant defense elicitors with nutrients (Keyplex 350DP plus Nutri-Phite, and Rezist with Cab'y), natural plant extracts (Liquid Seaweed Concentrate and Stimplex), and a synthetic growth regulator (Actigard 50W). Growth enhancement was noted in some trials, but the parameter of growth affected often varied with trial. Response to Actigard treatment included significant suppression of bacterial spot [Xanthomonas campestris pv. vesicatoria (Xcv)] in three of the six trials. Companion, Keyplex 350DP plus Nutri-Phite, Rezist and Cab'y, and seaweed products induced only partial disease suppression of bacterial spot in inoculated tomato plants. The alpha-keto acids plus nutrients (Keyplex 350DP plus Nutri-Phite) increased plant growth by 14.3% and improved root condition compared to the untreated control following exposure to nematodes. Results are encouraging, if not consistent, and with a greater understanding of the SR system and the conditions related to product efficacy, such materials may become effective tools for production agriculture.

Full access

Brent Rowell, R. Terry Jones, William Nesmith, April Satanek, and John C. Snyder

Bacterial spot epidemics, caused by Xanthomonas campestris pv. vesicatoria (Xcv), are still considered serious risks for commercial pepper (Capsicum annuum) growers in a number of eastern, southern and midwestern states. Newly released bell pepper cultivars with the Bs2 gene for resistance to Xcv races 1, 2, and 3 were compared in 2000 under bacterial spot-free and severe (natural) bacterial spot epidemic conditions in central and eastern Kentucky where similar trials had been conducted from 1995 to 1997. In addition to the replicated bell pepper trials, 49 hot and specialty pepper cultivars were grown for observation in single plots at the same two locations. As in previous trials, there were economically important differences in resistance and marketable yields among bell pepper cultivars having the Bs2 gene; some resistant cultivars were as susceptible as susceptible checks. Others were highly resistant in spite of the presence of Xcv races 3 and 6 in the eastern Kentucky trial. Only a few were highly resistant with excellent fruit quality. With a few notable exceptions, most of the hot and specialty cultivars were very susceptible to bacterial spot. Two of the three new jalapeño cultivars carrying Bs2 were highly resistant to bacterial spot and high yielding under severe epidemic conditions.

Free access

J.W. Scott, D.M. Francis, S.A. Miller, G.C. Somodi, and J.B. Jones

Crosses were made between tomato (Lycopersicon esculentum Mill.) inbreds susceptible to races T2 and T3 of bacterial spot (Xanthomonas vesicatoria and Xanthomonas campestris pv. vesicatoria, respectively) and accession PI 114490 with resistance to races T1, T2, and T3. Resistance to race T2 was analyzed using the parents, F1, and F2 generations from one of the crosses. The F1 was intermediate between the parents for disease severity suggesting additive gene action. The segregation of F2 progeny fit a two-locus model (χ2 = 0.96, P = 0.9-0.5) where four resistance alleles are required for a high resistance level, two or three resistance alleles provide intermediate resistance, and zero or one resistance allele results in susceptibility. The narrow sense heritability of resistance to T2 strains was estimated to be 0.37 ± 0.1 based on F2 to F3 parent-offspring regression. A second cross was developed into an inbred backcross (IBC) population to facilitate multilocation replicated testing with multiple races. Segregation for T2 resistance in the inbred backcross population also suggested control was by two loci, lending support to the two-locus model hypothesized based on the F2 segregation. To determine if the same loci conferred resistance to the other races, selections for race T2 resistance were made in the F2 and F3 generations and for race T3 resistance in the F2 through F4 generations. Six T3 selections (F5), 13 T2 selections (F4's that diverged from seven F2 selections), and control lines were then evaluated for disease severity to races T1, T2, and T3 over two seasons. Linear correlations were used to estimate the efficiency of selecting for resistance to multiple races based on a disease nursery inoculated with a single race. Race T1 and race T2 disease severities were correlated (r ≥ 0.80, P< 0.001) within and between years while neither was correlated to race T3 either year. These results suggest that selecting for race T2 resistance in progeny derived from crosses to PI 114490 would be an effective strategy to obtain resistance to both race T1 and T2 in the populations tested. In contrast, selection for race T3 or T2 will be less likely to result in lines with resistance to the other race. PI 114490 had less resistance to T3 than to T2 or T1. Independent segregation of T2 and T3 resistance from the IBC population derived from PI 114490 suggests that T3 resistance is not controlled by the same genes as T2 resistance, supporting the linear correlation data.

Open access

A. A. Cook

Abstract

‘Florida XVR 3-25’ is a nonpungent, bell pepper (Capsicum annuum L.) resistant to tobacco etch and potato Y viruses and both pepper pathotypes of the spot bacterium Xanthomonas campestris pv. vesicatoria (Dowson) Young et al. The combined resistances to these viruses and bacterial spot should prove useful in areas where these diseases are prevalent.

Open access

A. M. Hibberd, D. Gillespie, G. C. Nahrung, and D. M. Persley

Abstract

‘Redlands Sweet Sue’ is a highly productive, nonpungent, smooth skinned pepper. The fruit shape is similar to ‘Sweet Banana’ and size and color is similar to ‘Cubanelle’. Plants were selected for resistance to the leaf spot bacterium Xanthomonas campestris pv. vesicatoria and one of three strains of potato virus Y (PVY) endemic in southeast Queensland. Plants continuously set fruit and offer wide adaptability in regions where the PVY complex is not a major problem.