Search Results

You are looking at 11 - 20 of 58 items for :

  • "Malus sylvestris var. domestica" x
  • Refine by Access: All x
Clear All
Free access

Richard P. Marini

Data obtained over two years from chemical thinning experiments with `Redchief Delicious' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Manst.] on Malling 26 (M.26) rootstock were used to estimate mean fruit weight (MFW) and mean fruit value (MFV) using two sampling methods. The estimated values were compared with the true MFW and the true MFV calculated from the entire crop from a tree. Statistical techniques were used to assess agreement between the values obtained with estimation methods and the true values. Estimates of MFW obtained from a 20-fruit sample per tree may differ from the true value by ≈13% and estimates obtained from weighing all fruit on three limbs per tree may range from 11% to 19% of the true mean. Estimates of MFV obtained from packouts of a 20-fruit sample may differ from the true value by about $0.04 (U.S. dollars)/fruit and estimates from packing out all fruit on three limbs per tree may differ from the true mean by about $0.07/fruit. Analysis of variance was performed on each data set. The resulting P values differed for the three methods of calculating MFW and MFV. Therefore, erroneous conclusions may result from experiments where MFW and MFV are estimated from subsamples. Error associated with estimating fruit weight and fruit value from the sampling methods employed in this study may be larger than many pomologists can accept. Until protocols for sampling apple trees, which account for the important sources of within-tree variation, are developed, researchers should consider harvesting the entire crop to calculate MFW and MFV.

Free access

Richard P. Marini, John A. Barden, John A. Cline, Ronald L. Perry, and Terence Robinson

The influence of rootstock on average fruit weight was evaluated for a subset of data from a multilocation NC-140 apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] rootstock trial. Data for eight dwarf rootstocks were collected at four locations for 2 years. Analysis of covariance was used to evaluate the effect of rootstock on average fruit weight when crop density or number of fruit per tree was included in the linear model as a covariate. When number of fruit harvested per tree was used as a covariate, average fruit weight was not affected by rootstock in either year in Ontario. In Michigan and Virginia, rootstock and number of fruit per tree, but not the rootstock × number of fruit interaction, were significant, so common slopes models were used to estimate least squares means for average fruit weight. In general, trees on M.27 and P.1 produced the smallest fruit, and trees on B.9, M.9 EMLA, and Mac.39 produced the largest fruit. In New York the interaction of rootstock × number of fruit was significant, so least squares means were estimated at three levels of number of fruit per tree. Both years, at all levels of number of fruit, trees on M.26 EMLA produced the smallest fruit and trees on M.27 EMLA produced the largest fruit. Average fruit weight was most affected by number of fruit per tree when Mark was the rootstock. In general, results were similar when crop density was used as the covariate, except that trees on M.27 EMLA did not produce small fruit in Michigan and Ontario.

Free access

Robert A. Saftner, William S. Conway, and Carl E. Sams

Effects of postharvest pressure infiltration of distilled water, CaCl2 solutions at 0.14 or 0.27 mol·L-1 without and with subsequent fruit coating treatments of preclimacteric `Golden Delicious' [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf. `Golden Delicious'] apples on volatile levels, respiration, ethylene production, and internal atmospheres after storage at 0 °C for 1 to 6 months, and during subsequent shelf life at 20 °C were investigated. Over 30 volatiles were detected, most of the identified volatiles were esters; the rest were alcohols, aldehydes, ethers, a ketone, and a sesquiterpene. Pressure infiltration of water and increasing concentrations of CaCl2 resulted progressively in reduced total volatile levels, respiration, ethylene production, and internal O2 levels and increased CO2 levels in fruit following 2 to 4 months storage in air at 0 °C. Total volatile levels, respiration, ethylene production, and internal atmospheres of CaCl2-treated apples at 0.14 mol·L-1 gradually recovered to nontreated control levels following 2 weeks of shelf life at 20 °C and/or storage at 0 °C in air for more than 4 months. Following the calcium treatments with a shellac- or wax-based coating had similar but stronger and more persistent effects on volatile levels, respiration, ethylene production, and internal atmospheres than those found in fruit treated with CaCl2 alone. Calcium infiltration did not change the composition of volatile compounds found in fruit. Results suggest that pressure infiltration of `Golden Delicious' apples with CaCl2 solutions transiently inhibited volatile levels, respiration, and ethylene production, in part, by forming a more-or-less transient barrier to CO2 and O2 exchange between the fruit tissue and the surrounding atmosphere.

Free access

Luiz Argenta, Xuetong Fan, and James Mattheis

The efficacy of the ethylene action inhibitor 1-methylcyclopropene (1-MCP) applied in water to slow ripening of `Golden Delicious' [Malus sylvestris var. domestica (Borkh.) Mansf.] apples was evaluated in comparison with 1-MCP applied as a gas in air. The material was applied by dipping fruit in 1-MCP water solutions (0, 0.03, 0.3 or 3 μM) for 4 min, or by exposing fruit to 1-MCP gas (0, 0.01, 0.1 or 1 μL·L-1) in air for 12 h. Fruit were held in air at 20 °C for 25 days after treatment or stored at 0.5 °C in air for up to 6 months followed by 7 days in air at 20 °C. Application of 1-MCP in water or air delayed the increase in respiration and ethylene production associated with fruit ripening, and reduced the amount of fruit softening, loss of acidity and change in peel color. Treatments applied in water required a concentration 700-fold higher compared to those applied in air to induce similar physiological responses. Fruit responses to 1-MCP varied with treatment concentration, and the maximum effects were obtained at concentrations of 0.1 or 1 μL·L-1 in air and 3 μM in water. Peel color change was impacted less than retention of firmness and titratable acidity for some 1-MCP treatments. Treatment with 1-MCP was less effective for slowing peel degreening when treated fruit were stored at 0.5 °C compared to storage at 20 °C. In 1 of the 3 years of this study, fruit treated with 1-MCP and stored in air at 0.5 °C developed a peel disorder typified by a gray-brown discoloration that is unlike other disorders previously reported for this cultivar.

Free access

Georgios Psarras, Ian A. Merwin, Alan N. Lakso, and John A. Ray

A 2-year field study of `Mutsu' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] on `Malling 9' (M.9) rootstock was conducted to observe root growth in situ, and compare patterns of root growth, root maturation and turnover rates, and soil-root respiration. Rhizosphere respiration was monitored with a portable chamber connected to an infrared gas analyzer; root emergence, browning, and turnover rates were measured by direct observation through minirhizotron tubes inserted in the root zone. Negligible root growth was observed before the onset of shoot growth in mid-May. In both years, a main peak of new root emergence in late June and early July coincided partially with major phases of shoot and fruit growth. A smaller peak of root emergence during August to September 1997 consisted primarily of new roots at 20 to 45 cm soil depths. Most roots remained <1 mm in diameter and developed in the upper 25 cm soil profile; no roots were observed at any time below 50 cm, due to a compacted soil layer at that depth. The cumulative survivorship of new roots was 38% in 1996 and 64% in 1997, and 50% of emergent white roots turned brown or senesced within 26 days in 1996 and 19 days in 1997. Root turnover rates were highest in mid-August both years. Rhizosphere respiration was correlated (r 2 = 0.36 and 0.59, P = 0.01 and 0.004) with soil temperatures in 1996 and 1997, with Q10 values of 2.3 in both years. The Q10 for root-dependent respiration (the difference between soil only and combined soil-root respiration) in 1997 was 3.1, indicating that roots were more sensitive than soil microflora to soil temperature. The temporal overlap of high rates of shoot, root and fruit growth from late May to mid-July suggests this is a critical period for resource allocations and competition in temperate zone apple trees.

Free access

Zhiguo Ju and Eric A. Curry

Lovastatin is a specific hydroxymethylglutaryl coenzyme-A reductase inhibitor in animals and as such, is a potent cholesterol lowering pharmaceutical for human use. Because it has also been shown to inhibit α-farnesene in certain plants, we investigated its effects on ethylene and α-farnesene biosynthesis, volatile production, and fruit color during ripening in `Golden Supreme' apples [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. Immediately after harvest, fruit were dipped in Lovastatin solution for 2 min, allowed to dry, and stored in the dark at 20 °C for 30 days. Internal ethylene at harvest was low (< 0.1 mL·L-1) and α-farnesene was undetectable. Both internal ethylene and α-farnesene increased in nontreated fruit during 30 days storage. Prestorage Lovastatin treatment did not affect ethylene synthesis, but at 1.25 or 2.5 mmol·L-1 nearly eliminated α-farnesene production. At 0.25 mmol·L-1, Lovastatin delayed the increase in α-farnesene production about 12 days and reduced total α-farnesene production by the end of storage compared with controls. When applied to nontreated preclimacteric fruit, ethephon at 1.4 mmol·L-1 increased both internal ethylene concentration and α-farnesene production. In Lovastatin-treated preclimacteric fruit, however, ethephon increased internal ethylene concentration without promoting α-farnesene synthesis. In another trial, after 30 days storage at 0 °C, fruit were treated with 1.25 mmol·L-1 Lovastatin and stored at 20 °C with air circulation for 20 days. These fruit accumulated similar amounts of ethylene as nontreated controls, but α-farnesene production decreased rapidly and was not detectable after 5 days. Treating with ethephon at 1.4 mmol·L-1 increased α-farnesene production in control fruit but not in Lovastatin-treated fruit. Lovastatin treatment did not affect the change in fruit color. Chemical names used: [1S-[1α (R °), 3α, 7β, 8β (2S °, 4S °), 8ab]]-1,2,3,7,8,8α-hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1-naphthaienyl 2-methylbutanoate (Lovastatin); 2-chloroethylphosphonic acid (ethephon).

Free access

I. Lara and M. Vendrell

ABA and ethylene treatments were applied to preclimacteric `Granny Smith' apples [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] harvested at three different maturity stages. Ethylene production rates, ethylene-forming capacity (EFC), free and conjugated ACC contents, presence of ACC oxidase (ACO) and ripening-related ACC synthase (ACS) proteins, and endogenous ABA levels were monitored at harvest and during 3 weeks thereafter. ABA treatment resulted in a specific accumulation of ACO protein and of ACS-related polypeptides in fruit collected ≈2 months before commercial harvest, whereas the same tissues showed no response to exogenous ethylene. In contrast, fruit harvested 1 month later proved more sensitive to ethylene but not to ABA, in accordance with evolution of endogenous ABA levels, which were highest at this maturity stage and were enhanced in response to exogenous ethylene. A possible role for ABA as an inductor of the competency to ripen is discussed. Chemical names used: abscisic acid (ABA); 1-aminocyclopropane-1-carboxylic acid (ACC).

Free access

Nobuhiro Kotoda, Masato Wada, Sadao Komori, Shin-ichiro Kidou, Kazuyuki Abe, Tetsuo Masuda, and Junichi Soejima

Two apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] homologous fragments of FLO/LFY and SQUA/AP1 (AFL and MdAP1, respectively) were analyzed to determine the relationship between floral bud formation and floral gene expression in `Jonathan' apple. The AFL gene was expressed in reproductive and vegetative organs. By contrast, the MdAP1 gene, identified as MdMADS5, which is classified into the AP1 group, was expressed specifically in sepals concurrent with sepal formation. Based on these results, AFL may be involved in floral induction to a greater degree than MdAP1 since AFL transcription increased ≈2 months earlier than MdAP1. Characterization of AFL and MdAP1 should advance the understanding of the processes of floral initiation and flower development in woody plants, especially in fruit trees like apple.

Free access

Zhiguo Ju and William J. Bramlage

Influences of fruit maturity, AVG and ethephon preharvest treatments, and storage conditions on cuticular phenolic concentration, α-farnesene accumulation and oxidation, and scald development of `Delicious' apples [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] were studied. Advanced maturity and ethephon treatment increased free phenolics in fruit cuticle at harvest, while AVG treatment caused a reduction. Free cuticular phenolics increased during early storage in ethephon-treated and nontreated fruit but not in AVG-treated apples. Advanced maturity and ethephon did not alter α-farnesene accumulation overall, but reduced conjugated triene (CT281) formation and scald development. When stored in a low-ethylene room (<1 μL·L-1), AVG-treated fruit accumulated very low levels of α-farnesene and CT281 and did not develop scald after 6 months at 0 °C. When stored in a commercial room (ambient ethylene >5 μL·L-1), the AVG-treated and control fruit accumulated similar amounts of α-farnesene and CT281 and developed similar percentages of scald. In general, free phenolic concentrations in fruit cuticle were negatively correlated with CT281 formation and scald development of apples. Chemical names used: aminoethoxyvinylglycine (AVG); 2-chloroethylphosphonic acid (ethephon).

Free access

D. Michael Glenn, Gary J. Puterka, Stephen R. Drake, Thomas R. Unruh, Allen L. Knight, Pedro Baherle, Ernesto Prado, and Tara A. Baugher

Particle film technology is a developing pest control system for tree fruit production systems. Trials were performed in Santiago, Chile, and York Springs, Pa., Wenatchee and Yakima, Wash., and Kearneysville, W. Va., to evaluate the effect of particle treatments on apple [Malus sylvestris (L.) Mill. var. domestica (Borkh) Manst.] leaf physiology, fruit yield, and fruit quality. Leaf carbon assimilation was increased and canopy temperatures were reduced by particle treatments in seven of the eight trials. Yield and/or fruit weight was increased by the particle treatments in seven of the eight trials. In Santiago and Kearneysville, a* values of the fruit surface were more positive in all trials although a* values were not increased in Wenatchee and Yakima. Results indicate that particle film technology is an effective tool in reducing heat stress in apple trees that may result in increased yield potential and quality.