Search Results

You are looking at 11 - 20 of 69 items for :

  • "Lagenaria siceraria" x
  • Refine by Access: All x
Clear All
Open access

Nebahat Sari, Emily Silverman, Danny Reiland, and Todd C. Wehner

., 2007 ). There is a considerable interest in bottle gourd seeds because of their high nutritional quality, mainly in terms of protein and oil content ( Pradhan et al., 2013 ). Lagenaria siceraria can also be used as a rootstock for watermelon to

Free access

Chandrasekar S. Kousik, Amnon Levi, Kai-Shu Ling, and W. Patrick Wechter

Bottle gourd [ Lagenaria siceraria (Mol.) Standl.], which belongs to the Cucurbitaceae family, is considered to be one of the earliest species of plants to be domesticated by humans. Bottle gourds are regularly grown and consumed in various parts

Open access

Pinki Devi, Penelope Perkins-Veazie, and Carol A. Miles

-resistance. The most commonly used rootstocks for watermelon grafting are Lagenaria siceraria (bottle gourd), Cucurbita moschata (winter squash or pumpkin), and C. moschata × C. maxima (interspecific squash hybrid). Although watermelon grafted onto

Free access

Hae-Jeen Bang, Soo-Jung Hwang, Hyun-Sook Ham, and Jung-Myung Lee

Grafting is common in all cucurbits in Asia, and gourd (Lagenaria siceraria) is the most popular rootstock for watermelons. Since the grafting is practiced at very early stage (right after the cotyledon expansion), uniform germination of rootstocks as well as the scions is crucial for grafting efficiency. Seeds were divided into three groups; intact, dry-heat treated (75 °C for 72 h), and brushed (575 rpm for 5 min). In each group, various solid matrix priming (SMP) treatments were imposed. Microcel E was used for SMP treatment with water or chemical solutions (10 seed: 1 Microcel E: 3 water, by weight). SMP treatment promoted earlier seed germination in all tested cultivars, thus resulting in higher rate of graftable seedlings. Brushing before SMP further enhanced earlier and uniform seed germination. Dry heat treatment, which can eliminated the seed-borne Fusarium spp. and virus, significantly delayed the early germination although the final germination percentage was not influenced. The characteristics of seedlings will also be presented.

Free access

James D. McCreight and Albert N. Kishaba

Squash leaf curl (SLC) is a virus disease of squash transmitted by the sweetpotato whitefly [Bernisia tabaci (Germ.)]. 'Cucurbita maxima Duch. ex Lam., C. mixta Pang, and C. pepo L. cultivars and the wild taxon. C. texana Gray exhibited severe symptoms in response to SLC in greenhouse and field tests. Symptoms on C. moschata (Duch.) Duch. ex Poir. cultivars were much more severe in greenhouse tests than in field tests. Three wild species, C. ecuadorensis Cutler and Whitaker, C. lundelliana Bailey, and C. martinezii Bailey, were virtually immune in greenhouse tests, but were infected in field tests. Cucurbita foetidissima HBK expressed moderate symptoms in a field test. Benincasa hispida (Thunb.) Cogn., C. ficifolia Bouche, Lagenaria siceraria (Mol.) Standl., Luffa acutangula (L.) Roxb., Luffs aegyptiaca Mill., and Luffs graveolens Roxb. were resistant to SLC in greenhouse and field tests.

Full access

Shawna L. Daley, William Patrick Wechter, and Richard L. Hassell

Fatty alcohol treatments can be used to eliminate the meristem of cucurbit (Cucurbitaceae) rootstocks, which prevents regrowth when grafting, but the effects of the treatment on the rootstock have not been documented. Two rootstock types, ‘Emphasis’ bottle gourd (Lagenaria siceraria) and ‘Carnivor’ interspecific hybrid squash (Cucurbita maxima × C. moschata) commonly used in watermelon (Citrullus lanatus) grafting significantly increased in cotyledon and hypocotyl size over 21 days after treatment (DAT) with a 6.25% fatty alcohol emulsion. There was a significant increase in total soluble sugar (glucose, sucrose, and fructose) content for each rootstock hypocotyl and cotyledon. Starch concentrations of hypocotyls and cotyledons also increased significantly in both rootstocks. This increase in stored energy could greatly increase the success rate of the grafting process. Increased rootstock energy reserves could overcome the need for keeping the rootstock cotyledon intact when grafting.

Free access

Hae-Jeen Bang, Soo-Jung Hwang, Hyun-Sook Ham, and Jung-Myung Lee

The effectiveness of solid matrix priming (SMP) and seed brushing was further evaluated by using an thermo-gradient table (Seed Processing, Holland) set at 10 different temperatures from 12 to 30 °C. Intact or brushed seeds of gourd (Lagenaria siceraria) were primed with Micorocel E (Celite Corp.) at 25 °C for 3 days in the mixture of 10 seed: 1 Microcel E: 3 water, by weight, and the primed seeds were dried again for long-term storage. SMP treatment significantly increased earlier seed germination at all temperatures. However, the difference in seed germination rate between intact and SMP-treated seeds was most pronounced at somewhat lower temperatures of 18-22 °C. SMP-treated seed showed about 20% final germination rate at 12 °C, whereas intact seeds did not germinate at all. Seed brushing treatment itself did not influenced the germination rate. However, brushing treatment before SMP treatment significantly increased the SMP effect. Combined use of chemicals in solution further increased the early germination. Details of various seed treatment methods will be presented.

Free access

A.N. Kishaba, S. Castle, J.D. McCreight, and P.R. Desjardins

Confined-leaf tests in a greenhouse showed Lagenaria siceraria (Molina) Standley plant introduction (PI) 442369 was as susceptible to sweetpotato whitefly, Bemisia tabaci Gennadius, oviposition as Cucumis melo L., Cucurbita ecuadorensis Cutler and Whitaker, and Cucurbita lundelliana Bailey, whereas L. siceraria accessions PI 419090, PI 419215, PI 432341, and PI 432342 were resistant. Resistance rankings of L. siceraria accessions based on adult counts in greenhouse and field tests were similar. Adult entrapment among trichomes was highest on adaxial leaf surfaces of L. siceraria PI 419090. Abaxial leaf trichome density was 48.7/mm on sweetpotato whitefly-resistant L. siceraria PI 432342, 42.1/mm2 on Cucurbita lundelliana PI 540895, and ranged from 51.0 to 85.5/mm2 on Cucurbita ecuadorensis PI 540896. Leaf trichome densities of selected plants of four L. siceraria accessions ranged from 33.0 to 52/mm2 on the abaxial and from 6.3 to 20.8/mm2 on the adaxial surface. Scanning electron micrographs of the abaxial leaf surface, the preferred surface for oviposition, suggest that trichome configuration (density and arrangement of different lengths) could be a factor in reduction of whitefly oviposition on L. siceraria.

Free access

Gilbert Miller, Ahmad Khalilian, Jeffrey W. Adelberg, Hamid J. Farahani, Richard L. Hassell, and Christina E. Wells

Delineating the depth and extent of the watermelon [Citrullus lanatus (Thumb.) Matsum. & Nak.] root zone assists with proper irrigation management and minimizes nutrient leaching. The objective of this 3-year field study was to measure root distribution and root length density of watermelon (cv. Wrigley) grafted on two different rootstocks (Lagenaria siceraria cv. ‘FR Strong’ and Cucurbita moschata × Cucurbita maxima cv. Chilsung Shintoza) and grown under three soil moisture treatments. Irrigation treatments tested were: no irrigation (NI), briefly irrigated for fertigation and early-season plant establishment; minimally irrigated (MI), irrigated when soil moisture in top 0.30 m of soil fell below 50% available water capacity (AWC); well irrigated (WI), irrigated when soil moisture in top 0.30 m of soil fell below 15% (AWC). Root length density (RLD) was measured from 75-cm-deep soil cores at two locations three times per growing season and a third location at the end of the season. Cores 1 and 2 sample locations were 15 cm to the side of each plant: Core 1 on the same side as the drip tape and Core 2 on the opposite side. At the end of the season, Core 3 was taken 15 cm outside of the bed in bare ground. RLD was significantly greater in the 0- to 30-cm soil depth and dropped dramatically below 30 cm; it was not significantly affected by irrigation treatment or rootstock. Core 1, next to the drip tape, had greater RLD than Core 2, 30 cm from drip tape, but only at the later sampling dates. Roots were found in Core 3 at all depths, but the RLD was significantly less than that measured in Cores 1 and 2. These findings suggest that the effective root zone depth for watermelon is 0 to 30 cm and that the particular scion/rootstock combinations tested in this study do not differ in root system size or location.

Free access

Guiseppe Colla, Youssef Roupahel, Mariateresa Cardarelli, and Elvira Rea

A greenhouse experiment was carried out to determine growth, yield, fruit quality, gas exchange and mineral composition of watermelon plants (Citrullus Lanatus L. `Tex'), either ungrafted or grafted onto two commercial rootstocks `Macis' [Lagenaria siceraria (Mol.) Standl.] and `Ercole' (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne) and cultured in NFT. Plants were supplied with a nutrient solution having an electrical conductivity (EC) of 2.0 or 5.2 dS·m–1. The saline nutrient solution had the same basic composition, plus an additional of 29 mm of NaCl. Increased salinity in the nutrient solution decreased total yield. The reduction in total yield in saline treatments compared to control was due to a reduction in the fruit mean mass and not to the number of fruit per plant. Total fruit yield was 81% higher in grafted than in ungrafted plants. The lowest marketable yield recorded on ungrafted plants was associated with a reduction in both fruit mean mass and the number of fruits per plant in comparison to grafted plants. Salinity improved fruit quality in all grafting combinations by increasing dry matter (DM), glucose, fructose, sucrose, and total soluble solid (TSS) content. Nutritional qualities of grafted watermelons such as fruit DM, glucose, fructose, sucrose, and TSS content were similar in comparison to those of ungrafted plant. In all grafting combinations, negative correlations were recorded between Na+ and Cl in the leaf tissue and net assimilation of CO2 Grafting reduced concentrations of sodium, but not chloride, in leaves. However, the sensitivity to salinity was similar between grafted and ungrafted plants and the higher total yield from grafting plants was mainly due to grafting per se.