Search Results

You are looking at 11 - 20 of 112 items for :

  • " Vicia villosa " x
  • Refine by Access: All x
Clear All
Full access

Gary R. Cline and Anthony F. Silvernail

Effects of tillage, inorganic N, and winter cover crops on sweet corn (Zea mays) were examined in 1994, 1995, and 1996. Tillage treatments were tillage or no tillage, and N treatments were the addition of inorganic N at 0 (N0) or 200 (N+) kg·ha-1 (0 or 179 lb/acre). Winter cover crops included hairy vetch (Vicia villosa), winter rye (Secale cereale), and a vetch/rye biculture. In the N0, rye treatment, the soil was N deficient in 1994 and highly N deficient in 1995 and 1996. When vetch shoot N content was ≥150 kg·ha-1 (134 lb/acre) (1994 and 1995), addition of inorganic N did not increase corn yields, and it only increased corn foliar N concentrations by 8%. Reductions in corn yields (29%) and foliar N concentrations (24%) occurred when vetch shoot N content was only 120 kg·ha-1 (107 lb/acre) (1996) and inorganic N was not supplied. In 1994, the vetch/rye biculture supplied sufficient N for maximum corn yields, but addition of inorganic N increased yields by more than 50% in 1995 and 1996. Under tilled conditions, the vetch N contribution to corn appeared to equal (1996) or exceed (1994 and 1995) 82 kg·ha-1 (73 lb/acre) of N supplied as ammonium nitrate, whereas a mean value of 30 kg·ha-1 (27 lb/acre) was obtained for the biculture cover crop (1995 and 1996). No significant effects of tillage on sweet corn population densities were detected following vetch, but no-tillage significantly reduced corn population densities following rye (17%) or biculture (35%) cover crops compared to tillage. No-tillage did not reduce yields from emerged seedlings (per plant basis) for any cover crops. Vetch appeared to be a satisfactory N source for sweet corn when vetch N content was ≥150 kg·ha-1, and it could be used with no-tillage without yield reductions.

Free access

Steven J. Guldan, Charles A. Martin, Jose Cueto-Wong, and Robert L. Steiner

Five legumes [hairy vetch (Vicia villosa Roth.), barrel medic (Medicago truncatula Gaerth.), alfalfa (Medicago sativa L.), black lentil (Lens culinaris Medik.), and red clover (Trifolium pratense L.)] were interseeded into sweet corn (Zea mays L.) at last cultivation when sweet corn was at about the V9 (early) or blister (late) stage. The effect of legume interseeding on sweet corn yield, and late-season dry-matter and N yields of aboveground portions of the legumes was determined. Sweet corn yield was not affected by legume interseeding. In 1993, legume dry-matter yields were 1420 kg·ha–1 interseeded early and 852 kg·ha–1 interseeded late. Nitrogen yields were 49 kg·ha–1 interseeded early and 33 kg·ha–1 interseeded late. In 1994, dry-matter yields were 2760 kg·ha–1 interseeded early and 1600 kg·ha–1 interseeded late. Nitrogen yields were 83 kg·ha–1 interseeded early and 50 kg·ha–1 interseeded late. In 1993, barrel medic was the highest-yielding legume with dry matter at 2420 kg·ha–1 and N at 72 kg·ha–1 interseeded early, while red clover yielded the lowest with dry matter at 340 kg·ha–1 and N at 12 kg·ha–1 interseeded late. In 1994, dry-matter and N yields ranged from 4500 and 131 kg·ha–1, respectively, for early interseeded barrel medic to 594 kg·ha–1 and 16 kg·ha–1, respectively, for late interseeded red clover.

Free access

Wilfred Singogo, William J. Lamont Jr., and Charles W. Marr

Four cover crops {alfalfa (Medicago sativa L. `Kansas Common'), hairy vetch (Vicia villosa Roth), Austrian winter pea [Pisum sativum subsp. arvense (L.) Poir], and winter wheat (Triticum aestivum L. `Tam 107')}, alone and in combination with feedlot beef manure at 5 t·ha–1 were evaluated for 2 years to determine whether sufficient N could be supplied solely by winter cover cropping and manure application to produce high-quality muskmelons (Cucumis melo L. `Magnum 45') in an intensive production system using plastic mulch and drip irrigation. Among the legumes, hairy vetch produced the most biomass (8.9 t·ha–1) and accumulated the most N (247 kg·ha–1). Winter wheat produced more biomass (9.8 t·ha–1) than any of the legumes but accumulated the least N (87 kg·ha–1). Melon yields produced using legume cover crops alone were similar to those receiving synthetic N fertilizer at 70 or 100 kg·ha–1. Melons produced on plots with cover crops combined with beef manure did not differ significantly in yield from those produced on plots with only cover crops. Legume cover crops alone, used with plastic mulch and drip irrigation, provided sufficient N for the production of high-quality muskmelons.

Free access

Steven J. Guldan, Charles A. Martin, Jose Cueto-Wong, and Robert L. Steiner

Three legumes [hairy vetch (Vicia villosa Roth.), barrel medic (Medicago truncatula Gaerth.), and black lentil (Lens culinaris Medik.)] were interseeded into `New Mexico 6-4' chile pepper (Capsicum annuum L.) when plants were 20–30 cm tall (3 Aug., “early” interseeding) or when plants were 30–40 cm tall (16–17 Aug., “late” interseeding) in 1993 and 1994. Our objectives were to determine the effect of legume interseeding on cumulative chile yield, and late-season dry-matter and nitrogen yields of aboveground portions of the legumes. Legumes were harvested on 8 Nov. 1993 and 15 Nov. 1994. Chile yield was not significantly affected by legume interseeding. In 1993, legumes accumulated 57% more dry matter and 55% more N when interseeded 3 Aug. vs. 16 Aug. In 1994, legumes accumulated 91% more dry matter and 86% more N when interseeded 3 Aug. vs. 17 Aug. Aboveground dry-matter yields in 1993 ranged from 1350 kg·ha–1 for black lentil interseeded late to 3370 kg·ha–1 for hairy vetch interseeded early. Nitrogen yields ranged from 52 kg·ha–1 for black lentil interseeded late to 136 kg·ha–1 for hairy vetch interseeded early. In 1994, hairy vetch was the highest yielding legume with dry matter at 1810 kg·ha–1 and N at 56 kg·ha–1 interseeded early, while black lentil yielded the lowest with dry matter at 504 kg·ha–1 and N at 17 kg·ha–1 interseeded late. In the spring following each interseeding year, we observed that hairy vetch had overwintered well, whereas barrel medic and black lentil had not, except when a few plants of barrel medic survived the winter of 1994–95. Results from this study indicate that legumes can be successfully interseeded into chile in the high-desert region of the southwestern United States without a significant decrease in chile yield.

Free access

Vinod Kumar, Aref Abdul-Baki, James D. Anderson, and Autar K. Mattoo

Cover crop management in growing horticultural produce has attracted attention for reducing soil erosion and limiting the input of synthetic fertilizers and pesticides. Hairy vetch (Vicia villosa Roth.), one of the cover crops, exhibits desirable attributes such as high N fixing ability, biomass quality, adaptability to low temperatures, resistance to pests, and fitness in vegetable production, particularly in rotation with tomatoes. The interactions between the cover crop mulch and the tomato plant in the field plots result in delayed leaf senescence and increased disease tolerance. The mechanisms underlying these interactions are largely unknown. Limits in pursuing these studies year-round in the field—growing season and complexity and variability of the field environment—could be circumvented if the observed responses of tomato plants to hairy vetch mulch in the field could be reproduced under greenhouse conditions. We have tested tomato plants for two years in the greenhouse using soil residues brought from field plots where respective cover crops had been previously grown. Treatments were a) bare soil from a fallow, weed-free field plot, b) soil from a field plot that had been planted into a rye cover crop, and c) soil from a field plot that had been planted into a hairy vetch cover crop. Pots with soil from the rye or vetch field plots were further topped with rye or vetch residues, respectively, after transplanting the tomato plants. Additional N was applied to 50% of the plants in each treatment. In the greenhouse, cover crop residue-supplemented tomatoes exhibited high vigor, higher marketable yield and delayed senescence compared to those grown in bare soil. All treatments responded favorably to additional N from commercial fertilizers. Delayed leaf senescence correlated with the accumulation of rubisco large subunit and chitinase, two proteins central to photosynthesis and pathogenesis, respectively. This study shows that the responses of tomato plants to cover crops seen in the field can be mimicked under greenhouse conditions.

Full access

M. Rangappa, A.A. Hamama, and H.L. Bhardwaj

Although there is increasing interest in reducing the use of nitrogen (N) fertilizers due to the potential of unused N causing pollution of surface and groundwater, N is a major nutrient for plant growth. Our objective was to determine the potential of using winter legume cover crops to meet the N needs of seedless watermelon (Citrullus lanatus), a potential cash crop for farmers in Virginia. Fruit number, fruit weight, fruit yield, and fruit quality traits (flesh to rind ratio, water content, total soluble solids, sugar content, and pH) of seedless watermelons were evaluated in replicated experiments in Virginia at three locations during 1997-98 and two locations during 1998-99 following cover crop treatments consisting of crimson clover (Trifolium incarnatum), hairy vetch (Vicia villosa), crimson clover + rye (Secale cereale), hairy vetch + rye, and a bareground control treatment that received 100 lb/acre (112 kg·ha-1) of N. At all five locations, the bareground control treatment resulted in fewer fruit [1803 fruit/acre (4454 fruit/ha)], lower fruit weight [9.8 lb (4.5 kg)], and lower fruit yield [8.9 tons/acre (20.0 t·ha-1)] compared to the four cover crop treatments. The crimson clover + rye and hairy vetch treatments resulted in highest numberof fruit [2866 and 2657 fruit/acre (7079 and 6563 fruit/ha), respectively], whereas the highest fruit yield was obtained following hairy vetch [21.2 tons/acre (49.8 t·ha-1)], hairy vetch + rye [20.3 tons/acre (45.5 t·ha-1)], and crimson clover + rye [19.6 tons/acre (43.9 t·ha-1)]. Cover crop treatments did not affect the quality of watermelon flesh. The seedless watermelon fruit averaged 1.4 flesh: 1 rind ratio, 90% water content, 9.5% total soluble solids, 8.0% sugar, and a pH value of 5.9. These results indicated that legume cover crops, such as crimson clover and hairy vetch, can be successfully used to produce seedless watermelons, in a no-till system, without any use of N fertilizers with dryland conditions.

Free access

John R. Teasdale and Aref A. Abdul-Baki

Hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and rye (Secale cereale L.) and mixtures of rye with hairy vetch and/or crimson clover were compared for no-tillage production of staked, fresh-market tomatoes (Lycopersicon esculentum Mill.) on raised beds. All cover crops were evaluated both with or without a postemergence application of metribuzin for weed control. Biomass of cover crop mixtures were higher than that of the hairy vetch monocrop. Cover crop nitrogen content varied little among legume monocrops and all mixtures but was lower in the rye monocrop. The C:N ratio of legume monocrops and all mixtures was <30 but that of the rye monocrop was >50, suggesting that nitrogen immobilization probably occurred only in the rye monocrop. Marketable fruit yield was similar in the legume monocrops and all mixtures but was lower in the rye monocrop when weeds were controlled by metribuzin. When no herbicide was applied, cover crop mixtures reduced weed emergence and biomass compared to the legume monocrops. Despite weed suppression by cover crop mixtures, tomatoes grown in the mixtures without herbicide yielded lower than the corresponding treatments with herbicide in 2 of 3 years. Chemical name used: [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one](metribuzin).

Full access

Steven J. Guldan, Charles A. Martin, William C. Lindemann, Jose Cueto-Wong, and Robert L. Steiner

Hairy vetch (Vicia villosa Roth.), barrel medic (Medicago truncatula Gaerth.), and black lentil (Lens culinaris Medik.) were interseeded into `New Mexico 6-4' chile pepper (Capsicum annuum L.) when plants were 8 to 12 inches tall or 12 to 16 inches tall in 1993 and 1994. Hairy vetch overwintered well both years, whereas barrel medic and black lentil did not. Spring aboveground dry mass yields of hairy vetch averaged 2.11 and 2.57 tons per acre in 1994 and 1995, respectively, while N accumulation averaged 138 and 145 pounds per acre in 1994 and 1995, respectively. Forage sorghum [Sorghum bicolor (L.) Moench] dry mass yield and N accumulation were significantly higher following hairy vetch than following the other legumes or no-legume control. There was no significant difference between forage sorghum yields following barrel medic, black lentil, or the no-legume control. Fertilizer replacement values (FRV) for the legumes were calculated from regression equations for forage sorghum dry mass yield as a function of N fertilizer rate. FRV for hairy vetch were at least 7-times higher than for either barrel medic or black lentil. Hairy vetch interseeded into chile pepper and managed as a winter annual can significantly increase the yield of a following crop compared to a nonfertilized control.

Free access

Bruce P. Bordelon and Stephen C. Weller

Use of in-row cover crops for weed management in first-year vineyards was investigated in two studies. In the first study, rye (Secale cereal L. 'Wheeler') was fall-planted, overwintered, then managed by three methods before vine planting. Rye was either herbicide-desiccated with glyphosate and left on the surface as a mulch, mowed, or incorporated into the soil (cultivated). Weed density and growth of grapevines (Vitis spp.) were evaluated. Herbicide desiccation was superior to the other methods for weed suppression, with weed densities 3 to 8 times lower than for mowed or cultivated plots. Vine growth was similar among treatments, but the trend was for more shoot growth with lower weed density. In a second study, four cover crops, rye, wheat (Triticum aestivum L. 'Cardinal'), oats (Avena sativa L. 'Ogle'), and hairy vetch (Vicia villosa Roth), were compared. Wheat and rye were fall- and spring-planted, and oats and vetch were spring-planted, then desiccated with herbicides (glyphosate or sethoxydim) after vine planting and compared to weed-free and weedy control plots for weed suppression and grapevine growth. Cover crops provided 27% to 95% reduction in weed biomass compared to weedy control plots. Total vine dry mass was highest in weed-free control plots, was reduced 54% to 77% in the cover crop plots, and was reduced 81% in the weedy control. Fall-planted wheat and rye and spring-planted rye plots produced the highest vine dry mass among cover crop treatments. Spring-planted rye provided the best combination of weed suppression and vine growth. Chemical names used: N-(phosphonomethyl) glycine (glyphosate isopropylamine salt); 2-[l-(ethoxyimino)butyl]5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one (sethoxydim).

Full access

Deborah Willard and Harlene Hatterman Valenti

. Production Agr. 9 475 479 Teasdale, J.R. Daughtry, C.S.T. 1993 Weed suppression by live and desiccated hairy vetch ( Vicia villosa ) Weed Sci. 41 207 212