Search Results

You are looking at 181 - 190 of 2,016 items for :

  • nutritional quality x
  • Refine by Access: All x
Clear All
Free access

James B. Calkins and Bert T. Swanson

Media fertility, nutrient availability, and subsequently plant nutrition are critical factors that can be modified by growers to produce quality container-grown plants. The trend in container fertility has been toward incorporation of slow-release fertilizers; however, fertility release curves are variable and fertilizer longevity for many fertilizers is limited. Seventeen slow-release fertilizers were compared for longevity and plant performance over a 2-year production cycle using deciduous and evergreen plant materials. Plant growth was quantified based on height, volume, branching, dry weight, and quality. Soil fertility levels based on leachates were followed. Nutrient release for the incorporated fertilizers evaluated was variable. Fertility treatment effects were species-dependent. Several incorporated, slow-release fertilizers, especially those high in nitrogen and having extended release curves, including Nutricote 20–7–10, Scotts Experimental 24–6–10 and 26–6–11, Scotts Prokote Plus 20–3–10, Sierra 17–6–10, Sierra High N 24–4–6, Sierra Experimental 24–4–8, Woodace 21–4–10, Woodace 23–7–12, and Woodace Briquettes 23–2–0, show promise for use in 2-year container production systems.

Free access

Robert O. Miller, Steven E. Newman, and Janice Kotuby-Amacher

The accuracy of soil and plant analytical results are occasionally called into question by laboratory clientele. Although laboratories generally conduct internal quality assurance procedures, there are few external performance testing programs for the industry. In 1994, a proficiency testing program was initiated for soil and plant samples for agricultural laboratories in the western United States to provide an external quality control for the lab industry. The program involves the quarterly exchange of soil and plant samples on which soil salinity, soil fertility, and plant nutrition analyses are conducted. One hundred laboratories are annually enrolled in the program from 24 states and Canadian provinces. Results of 3 years of the program indicate soil nitrate, soil pH, extractable potassium, soil and organic matter are reproducible within 10% between laboratories. Soil-extractable phosphorus (by five methods), soil-extractable boron, and soluble chloride were only reproducible within 15% to 20% between laboratories. Plant nitrogen and phosphorus results were consistent across samples, laboratories, and methods. Variability in plant nitrate increased with decreasing tissue concentrations. Overall accuracy and precision of reported results, based on the use of NIST certified reference botanical samples, were excellent for N, P, K, Ca, and Cu. Generally, for any given analysis, the results of ≈10% of the laboratories exceed two standard deviations from the mean. Overall, significant improvement was noted in the laboratory industry proficiency through the course of the program.

Free access

Christopher Gunter, David Francis, and Alba Clivati McIntyre

Yellow shoulder disorder (YSD) is a physiological disorder of processing tomato that affects both the appearance and nutritional quality of the fruit. This disorder reduces the suitability of fruit intended for the whole-peeled and diced product markets. The YSD involves an interaction between plant genotype and the environment. A number of soil factors have been related to the incidence of YSD, including organic matter, phosphorous, K/Mg ratios, and soil K. Varieties of tomatoes differ in their susceptibility to color disorders, thus variety selection offers growers one strategy to manage this color disorder. The use of supplemental K application at a time when plants are blooming and actively growing offers a second strategy for management of YSD. To this end, a field study was conducted at the Southwest Purdue Agricultural Program in southwestern Indiana to study the effects of different sources of K on the color and quality of tomato fruit. Potassium chloride, potassium nitrate, and potassium sulfate were applied at first flowering in a solid, broadcast application. Appropriate controls were used to balance the nutrients supplied in addition to K. Supplemental K, regardless of source, improved fruit hue, though the trend was not always statistically significant between treatments. Variety specific effects were observed. This is a complex disorder and its management will entail minimizing risk of incidence through careful selection of variety and field location.

Free access

James W. Rideout and Laura F. Overstreet

Conventional tomato (Lycopersicon esculentum Mill.) seedling production can be labor intensive. The float system of production may be a less labor-intensive alternative. Float system technology is used extensively to produce tobacco seedlings, but is currently used very little for horticultural crop seedlings. Potential advantages of the float system include lowered production cost, more efficient use of water and nutrients, elimination of wetting of plant foliage thus reducing disease, and elimination of nutrient leaching to groundwater below the greenhouse. When grown in float culture using a tobacco nutritional regimen, tomato seedlings produced undesirably long stems. Greenhouse experiments were conducted to identify production practices that may limit this excessive growth. Practices evaluated included two fertilizers with either 2.2% or 0.87% P combined with brushing, clipping once, ethephon application, delay of fertilization for 10 days after seeding, brushing combined with delayed fertilization, and two levels of air movement. Greatest height control was obtained with a combination of practices. Most height control practices, except delayed fertilization (with nor without brushing), were more effective if combined with low P fertilizer. The combination of brushing with delayed fertilization using either fertilizer provided the best height control and the highest quality seedlings. Ethephon and brushing in combination with low P fertilizer were also effective. These experiments show that with use of height-limiting management techniques good quality tomato seedlings can be produced in the float system. The experiment did not address the field performance of the seedlings.

Free access

Jeanine M. Davis, Douglas C. Sanders, Paul V. Nelson, Laura Lengnick, and Wade J. Sperry

Boron deficiency in fresh-market tomatoes (Lycopersicon esculentum Mill.) is a widespread problem that reduces yield and fruit quality but is often not recognized by growers. Tomatoes were grown in field and hydroponic culture to compare the effects of foliar and soil applied B on plant growth, fruit yield, fruit quality, and tissue nutrient levels. Regardless of application method, B was associated with increased tomato growth and the concentration of K, Ca, and B in plant tissue. Boron application was associated with increased N uptake by tomato in field culture, but not under hydroponic culture. In field culture, foliar and/or soil applied B similarly increased fresh-market tomato plant and root dry weight, uptake, and tissue concentrations of N, Ca, K, and B, and improved fruit set, total yields, marketable yields, fruit shelf life, and fruit firmness. The similar growth and yield responses of tomato to foliar and root B application suggests that B is translocated in the phloem in tomatoes. Fruit from plants receiving foliar or root applied B contained more B, and K than fruit from plants not receiving B, indicating that B was translocated from leaves to fruit and is an important factor in the management of K nutrition in tomato.

Free access

Tara A. O'Brien and Allen V. Barker

This research evaluated production of wildflower sods in soil and composts of mixed municipal solid waste, biosolids and woodchips, fall leaves, and mixed agricultural wastes. Soil or composts were laid on plastic sheeting in outdoor plots, and a mixture of wildflower seeds was sown in July and in September in separate experiments. Quality of sods was assessed in two growing seasons. Best sods with respect to seed germination, stand establishment, and intensity and diversity of bloom over two seasons occurred in mature biosolids compost and in agricultural waste compost. These composts were low in ammonium but rich in total N. Germination and growth of wildflowers were limited by high ammonium concentrations in immature biosolids composts. Nitrogen deficiency limited sod growth and quality in leaf composts. Poor N nutrition and weed competition restricted sod production in soil. Fertilization of soil promoted unacceptably large weed growth. Summer seeding or fall seeding resulted in good sods, but many annual flowers that appeared in the summer seeding were absent in the fall-seeded planting. Using plastic-lined plots was a convenient system for evaluating composts and other media in outdoor culture.

Free access

T.K. Hartz, G. Miyao, R.J. Mullen, M.D. Cahn, J. Valencia, and K.L. Brittan

A survey of 140 processing tomato (Lycopersicon esculentum Mill.) fields in central California was conducted in 1996-97 to examine the relationship between K nutrition and fruit quality for processing. Quality parameters evaluated were soluble solids (SS), pH, color of a blended juice sample, and the percent of fruit affected by the color disorders yellow shoulder (YS) or internal white tissue (IWT). Juice color and pH were not correlated with soil K availability or plant K status. SS was correlated with both soil exchangeable K and midseason leaf K concentration (r = 0.25 and 0.28, p < 0.01) but the regression relationships suggested that the impact of soil or plant K status on fruit SS was minor. YS and IWT incidence, which varied among fields from 0% to 68% of fruit affected, was negatively correlated with K status of both soil and plant. Soil exchangeable K/√Mg ratio was the measure of soil K availability most closely correlated with percent total color disorders (YS + IWT, r = -0.45, p < 0.01). In field trials conducted to document the relationship between soil K availability and the fruit color disorders, soil application of either K or gypsum (CaSO4, to increase K/√Mg ratio) reduced YS and total color disorders. Multiple foliar K applications were effective in reducing fruit color disorders at only one of two sites. In no field trial did K application improve yield, SS, or juice color.

Free access

Chieri Kubota, Cynthia A. Thomson, Min Wu, and Jamal Javanmardi

Plants produce various phytochemicals that are of nutritional and medicinal value to humans. Phytochemicals having antioxidant capacity are drawing increased interest from consumers. Population studies among Americans have consistently demonstrated inadequate consumption of fruit and vegetables. Improving intake of fruit and vegetables has been a major public health effort for many years with minimal success. Given this, it seems opportunistic to consider other approaches to enhance the nutritional quality of the American diet. One plausible approach is the development of fresh produce containing a greater concentration of phytochemicals known to improve health, thus while consuming fewer servings of produce, Americans would still have significant exposure to health-promoting food constituents. Controlled environments provide a unique opportunity to modify the concentrations of selected phytochemicals in fruit and vegetables, yet practical information is limited regarding methods effective in optimizing antioxidant capacity. Our research at the University of Arizona Controlled Environment Agriculture Program has shown that application of moderate salt stress to tomato plants can enhance lycopene and potentially other antioxidant concentrations in fruit. The increase in lycopene in response to salt stress in the tomato fruit was shown to be cultivar specific, varying from 34% to 85%. Although the specific biological mechanisms involved in increasing fruit lycopene deposition has not been clearly elucidated, evidence suggests that increasing antioxidant concentrations is a primary physiological response of the plant to the salt stress. Another experiment showed that low temperature during postharvest increased antioxidant capacity of tomato fruit while it maintained the lycopene concentration. More detailed study in this area is needed including accumulation of antioxidant phytochemicals as affected by environmental conditions during the cultivation and the postharvest.

Free access

M.E. Musgrave, A. Kuang, L.K. Tuominen, L.H. Levine, and R.C. Morrow

Although plants are envisioned to play a central role in life support systems for future long-duration space travel, plant growth in space has been problematic due to horticultural problems of nutrient delivery and gas resupply posed by the weightless environment. Iterative improvement in hardware designed for growth of plants on orbital platforms now provides confidence that plants can perform well in microgravity, enabling investigation of their nutritional characteristics. Plants of B. rapa (cv. Astroplants) were grown in the Biomass Production System on the International Space Station. Flowers were hand-pollinated and seeds were produced prior to harvest at 39 days after planting. The material was frozen or fixed while on orbit and subsequently analyzed in our laboratories. Gross measures of growth, leaf chlorophyll, starch and soluble carbohydrates confirmed comparable performance by the plants in spaceflight and ground control treatments. Analysis of glucosinolate production in the plant stems indicated that 3-butenylglucosinolate concentration was on average 75% greater in flight samples than in ground control samples. Similarly, the biochemical make-up of immature seeds produced during spaceflight and fixed or frozen while in orbit was significantly different from the ground controls. The immature seeds from the spaceflight treatment had higher concentrations of chlorophyll, starch, and soluble carbohydrates than the ground controls. Seed protein was significantly lower in the spaceflight material. Microscopy of immature seeds fixed in flight showed embryos to be at a range of developmental stages, while the ground control embryos had all reached the premature stage of development. Storage reserve deposition was more advanced in the ground control seeds. The spaceflight environment thus influences B. rapa metabolite production in ways that may affect flavor and nutritional quality of potential space produce.

Free access

Beiquan Mou

There is increasing medical evidence for the health benefits derived from dietary intake of carotenoid antioxidants, such as β-carotene and lutein. Enhancing the nutritional levels of vegetables would improve the nutrient intake without requiring an increase in consumption. A breeding program to improve the nutritional quality of lettuce (Lactuca sativa L.) must start with an assessment of the existing genetic variation. To assess the genetic variability in carotenoid contents, 52 genotypes including crisphead, leaf, romaine, butterhead, primitive, Latin, and stem lettuces, and wild species were planted in the field in Salinas, Calif., in the Summer and Fall of 2003 with four replications. Duplicate samples from each plot were analyzed for chlorophyll (a and b), β-carotene, and lutein concentrations by high-performance liquid chromatography (HPLC). Wild accessions (L. serriola L., L. saligna L., L. virosa L., and primitive form) had higher β-carotene and lutein concentrations than cultivated lettuces, mainly due to the lower moisture content of wild lettuces. Among major types of cultivated lettuce, carotenoid concentration followed the order of: green leaf or romaine > red leaf > butterhead > crisphead. There was significant genetic variation in carotenoid concentration within each of these lettuce types. Crisphead lettuce accumulated more lutein than β-carotene, while other lettuce types had more β-carotene than lutein. Carotenoid concentration was higher in summer than in the fall, but was not affected by the position of the plant on the raised bed. Beta-carotene and lutein concentrations were highly correlated, suggesting that their levels could be enhanced simultaneously. Beta-carotene and lutein concentrations were both highly correlated with chlorophyll a, chlorophyll b, and total chlorophyll concentrations, suggesting that carotenoid content could be selected indirectly through chlorophyll or color measurement. These results suggest that genetic improvement of carotenoid levels in lettuce is feasible.