Search Results

You are looking at 151 - 160 of 843 items for :

  • Refine by Access: All x
Clear All
Open access

Charlie Garcia and Roberto G. Lopez

Supplemental lighting is required for the production of high-quality vegetable transplants in greenhouses when the photosynthetic daily light integral (DLI) is low. Light-emitting diodes (LEDs) are a promising alternative to high-pressure sodium (HPS) lamps. However, there are a limited number of studies that have evaluated how LED supplemental lighting spectral quality beyond blue (B) and red (R) radiation influences plant growth and development. Seeds of hybrid greenhouse seedless cucumber ‘Elsie’ (Cucumis sativus), tomato ‘Climstar’ (Solanum lycopersicum), and pepper ‘Kathia’ (Capsicum annuum) were sown and placed into a dark growth chamber until radicle emergence. Seedlings were grown in a greenhouse at a 25 °C constant temperature set point and under five lighting treatments. The supplemental lighting treatments delivered a total photon flux density (TPFD) of 120 μmol·m−2·s−1 for 16 h·d−1 based on an instantaneous threshold from HPS lamps or LEDs [three treatments composed of B (400–500 nm), R (600–700 nm), white, and/or far-red (FR; 700–800 nm) LEDs], and a control that delivered 25 μmol·m−2·s−1 from HPS lamps (HPS25). The LED treatments defined by their wavebands (TPFD in μmol·m−2·s–1) of B, green (G, 500–600 nm), R, and FR radiation were B20G10R75FR15, B25R95, and B30G30R60; whereas the HPS treatments emitted B7G57R47FR9 (HPS120) and B1G13R9FR2 (HPS25). Generally, cucumber, pepper, and tomato transplants under B30G30R60 and HPS120 supplemental lighting had the greatest stem diameter. Fresh weight and leaf area of all three species was greater when G radiation replaced R or B radiation. For example, leaf area and fresh weight of cucumber, tomato, and pepper increased (by 33%, 22%, and 49%; and 35%, 14%, and 56%, respectively) for plants under B30G30R60 supplemental lighting compared with plants under B25R95 supplemental lighting. The most compact cucumber and pepper transplants were those grown under B25R95 supplemental lighting, and the most compact tomatoes were those grown under the HPS25 (control) and B25R95 supplemental lighting. Tomato transplants under treatments providing ≥30 μmol·m−2·s−1 of G radiation had an increased incidence of leaf necrosis. From this study, we conclude that plant responses to supplemental lighting quality are generally genera-specific, and therefore high-wire transplants should be separated by genera to optimize production and quality. However, additional studies are required to provide complete LED supplemental lighting recommendations.

Free access

Piero A. Spada, Beth Ann A. Workmaster, and Kevin R. Kosola

Cranberry (Vaccinium macrocarpon) plants colonized with ericoid mycorrhizal fungi are capable of utilizing organic nitrogen sources that are unavailable to non-mycorrhizal plants. Despite the importance of mycorrhizal colonization in the nitrogen nutrition of wild cranberry, almost all measurements of cranberry nitrogen uptake and assimilation have been carried out with non-mycorrhizal plants. We have found that cranberry can be inoculated directly in solution culture. We cultured the ericoid mycorrhizal fungus Hymenoscyphusericaein liquid culture, harvested and rinsed hyphae, and added ≈200 mg fresh weight hyphae per rooted cranberry cutting (cv. Stevens) growing in a modified Johnson's solution. After 6 weeks, newly developed roots were most heavily colonized. We examined the effects of NH4 + concentration (5, 10, 20, 50, 100, and 500 μm NH4 +) in solution on colonization rates. Colonization (% root length) increased with increasing ammonium concentration in solution, with maximum colonization at 50 and 100 μm NH4 +; colonization was much lower at 500 μm NH4 +. Cranberry inoculated with H. ericaein solution culture will be used for analysis of the effects of mycorrhizal colonization on uptake kinetics of NH4 +, NO3 -, and amino acids.

Free access

Larry S. Kennedy, William B. Beavers, and Carl E. Sams

A common problem of researchers concerned with micronutrient plant nutrition is the development of a reliable and affordable experimental system. If nutrient distribution is uneven or subject to outside contamination, then the time and resources dedicated to a project will have been wasted. We have devised a dependable and cost effective nutrient distribution system which has many practical applications. This design is relatively maintenance free, easily adaptable to existing greenhouse conditions and limits the possibility of outside contamination. Using perlite as the rooting medium, our system is constructed of easily obtainable hardware and mechanical components. The total material cost of our system, which included three nutrient treatments, was approximately $800. This resulted in a conservative estimate of $12.50 per plant in our particular study. However, the cost of a larger experiment would be reduced considerably since additional replications could be added at approximately $2.00 each. The experimental set-up is described along with the initial cost analysis.

Free access

M.L. Pitts, P.P. David, and S. Riley

Four sweetpotato breeding lines were tested for their sodium tolerance in sand culture. All plants were grown in the greenhouse in sterilized sand and watered daily with a modified half-Hoagland solution (N: K-1:2:4). Four sodium levels (0, 35, 70, and 105 ppm) were applied to the breeding lines in a split-plot design with four replications. Soil leachate was collected every 2 days and was measured for P, Na concentration, and electrical conductivity. Plants were grown for 60 days. Preliminary results from analysis of soil leachate showed an increase in EC as sodium concentration increased 5 days after treatments were initiated. Potassium and Na concentration varied with each breeding line tested. Storage root fresh and dry weight were significantly affected by Na levels (i.e., lines tested were tolerant ≤70 ppm Na).

Free access

A.A. Trotman, W.A. Hill, D.G. Mortley, P.P. David, and P.A. Loretan

The effect of inoculation with Azospirillum brasilense strain Cd on mineral concentration in sweetpotato, [Ipomeo batatas (L) Lam cv. TI-155] tissue and ionic composition of plant nutrient solution was investigated in a greenhouse study. In the field, inoculation of sweetpotato with Azospirillum spp. has been reported to enhance. sweetpotato yield. In this study, 48-h old broth cultures were used as inoculum at a population density of approx. 1 × 108 cfu/ml. The inoculum (0.20 L) was added to the reservoirs containing 30.4 L of a modified half Hoagland's plant nutrient solution at 28 days after the start of the experiment Results indicate that percent total nitrogen in sweetpotato foliage tended to be higher for the inoculated fibrous mat than in the fibrous mat for non-inoculated plants. The percent total nitrogen in storage roots for the non-inoculated treatment tended to be higher than in storage roots for inoculated plants. Inoculation resulted in a slight increase in foliar phosphorus concentration but had no effect on phosphorus concentration in sweetpotato storage and fibrous root samples. Inoculation tended to reduce foliar calcium concentration. Magnesium concentration in leaf tissue was not influenced by inoculation. Foliar potassium concentration tended to increase slightly. The effect of inoculation on potassium concentration in sweetpotato root tissue was not well-defined; potassium concentration tended to be higher in fibrous root tissue for the inoculated treatment. But in storage root tissue, potassium concentration was higher for the non-inoculated treatment than for the inoculated treatment. Inoculation did not affect foliar concentrations of any of the micronutrients measured. This study indicates no effect of inoculation on ionic strength of nutrients in solution reservoirs.

Free access

David S. de Villiers, Robert W. Langhans, A.J. Both, Louis D. Albright, and Sue Sue Scholl

CO2 enrichment increases efficiency of light utilization and rate of growth, thereby reducing the need for supplemental lighting and potentially lowering cost of production. However, during warmer periods of the year, CO2 enrichment is only possible intermittently due to the need to vent for temperature control. Previous research investigated the separate and combined effects of daily light integral and continuous CO2 enrichment on biomass accumulation in lettuce. The current research was designed to look at the efficiency with which lettuce is able to utilize intermittent CO2 enrichment, test the accuracy with which growth can be predicted and controlled, and examine effects of varying CO2 enrichment and supplemental lighting on carbon assimilation and plant transpiration on a minute by minute basis. Experiments included application of various schedules of intermittent CO2 enrichment and gas exchange analysis to elucidate underlying physiological processes. Same-day and day-to-day adjustments in daily light integrals were made in response to occasional CO2 venting episodes, using an up-to-the-minute estimate of growth progress based on an integration of growth increments that were calculated from actual light levels and CO2 concentrations experienced by the plants. Results indicated lettuce integrates periods of intermittent CO2 enrichment well, achieving expected growth targets as measured by destructive sampling. The gas-exchange work quantified a pervasive impact of instantaneous light level and CO2 concentration on conductance and CO2 assimilation. Implications for when to apply supplemental lighting and CO2 enrichment to best advantage and methods for predicting and controlling growth under intermittent CO2 enrichment are discussed.

Free access

K.R. Goldman and C.A. Mitchell

Mineral resources will be recycled in a controlled ecological life-support system (CELSS) deployed in space. N typically is supplied to crops as \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} or \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-}\) \end{document} mixtures. In a CELSS, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} will be abundant, but nitrification will require energetically costly chemical or biological \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} oxidization. Rice is tolerant of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} and preferentially absorbs \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} if provided a 1 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} : 1 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} ratio in hydroponics. Hybrid rice absorbs more N as \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} than does inbred rice. To determine how much and in what proportion to \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} rice will tolerate \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} and how varying N sources will affect grain yield, semi-dwarf hybrid rice cultivar `Ai-Nan-Tsao' was grown hydroponically in a growth chamber. Nutrient solutions supplied 5 mm N as 40%, 60%, or 80% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} , the remainder as \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} . Periodic analysis of solutions tracked mineral uptake, and solutions were modified to maintain proper concentrations. Treatment stands were harvested 84 to 86 DAP. Across all treatments, yield characteristics were similar but were highest for the border plants, presumably due to greater light absorption. Yield-efficiency rate (YER: grams of grain·per cubed meter per day·[grams inedible shoot biomass]) was 0.09 for all treatments (border) and ranged from 0.03 to 0.05 (interior), Harvest index ranged from 0.28 to 0.30 (border) and 0.26 to 0.39 (interior). Edible yield rate (EYR: grams of grain per cubed meter per day) ranged from 20.97 to 26.45 (border) and 8.52 to 14.96 (interior). The sector provided with 80% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} had the highest YER, HI (interior), and EYR (interior), indicating that rice productivity was not limited by high percentages of N supplied as \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} . Supported by NASA grant NAGW-2329.

Free access

N.C. Yorio and G.W. Stutte

An experiment was conducted in the Biomass Production Chamber (BPC) at Kennedy Space Center to examine the effects of using continuously reused nutrient solution in an NFT system to support potato growth in batch and continuous planting scenarios. Tuberization was hastened and plant growth reduced on plants grown in the aged nutrient solution. We have previously reported that the effect is removed when the aged nutrient solution is filtered through activated charcoal. In order to investigate this apparent plant growth regulator response, an in vitro bioassay has been developed that allows for repeatable, small scale, and rapid testing of the tuber-inducing response. The bioassay is a liquid culture system that employs 600-mL Berzelius beakers capped with modified Sun transparent tissue culture bags, a light shield around the root zone, and a polyurethane foam support, which holds a micropropagated potato plantlet. With this bioassay, we have observed the same plant stunting and tuber initiation effects that were previously seen with the aged nutrient solution. The bioassay appears to be sensitive to environmental factors (PPF, photoperiod, and temperature) that influence tuberization. In addition, partially purified preparations of the apparent growth regulators have elicited the tuberization response. Currently, efforts are underway to examine the role of the microbial community associated with the BPC nutrient delivery system on the tuberization response.

Free access

Hyung Jun Kim, Chris Harlow, and Mary Peet

Rhizomes of black cohosh (Actaea racemosa L.) grown in the deep woodland shade of eastern North America have been used historically as medicinals, but wild populations have declined because of collection pressure. The purpose of this study is to determine the potential for black cohosh production in perlite. Currently, cultivated plants represent just 3% of the total harvest. Perlite production should also result in clean, uniform plant material. Rhizomes were grown at 18 °C in controlled environment chambers in the North Carolina State University (NCSU) Phytotron in perlite for 42 days with fertigation 3, 6, or 12 times daily and 18.5, 21.5, or 24.5 °C root zone temperatures adjusted using heating cables. Leaf areas of the 21.5 and 24.5 °C root temperature treatments were greater than the 18.5 °C treatment. Stem number and new root number was highest in the 21.5 °C treatment. No effects of the fertigation treatments were significant. The second experiment was conducted 7 June–31 Oct. 2004 in a naturally lit temperature-controlled (22/18 °C) glass greenhouse in the NCSU Phytotron at nutrient solution EC levels of 0.7, 1.1, or 1.5 dS·m-1 and shading levels of 0%, 50%, and 75%. Highest leaf area and increase in fresh weight of the rhizomes over the experimental period was in the 50% shading treatment, but no significant effects of EC treatments were observed. Rhizome fresh weight increased 310% in the 50% shade, compared to 193% and 196% in the 0% and 75% shading treatments, respectively. In conclusion, black cohosh appears to prefer some shading during summer and 21.5 °C root temperatures. Low EC (0.7 dS·m-1) and infrequent watering (3 times daily) did not appear to limit growth in this system, but these results should be confirmed in larger studies in commercial greenhouses.