Search Results

You are looking at 151 - 160 of 1,398 items for :

  • Refine by Access: All x
Clear All
Free access

Andreas Winkler, Stefanie Peschel, Kathleen Kohrs, and Moritz Knoche

occurs occasionally in fruit grown under rain shelters. These observations suggest water uptake can occur along different parallel pathways—e.g., both via vascular sap flow (xylem and phloem) in the pedicel and also via surface water uptake through a wet

Free access

Chen Chen, Meng-Ke Zhang, Kang-Di Hu, Ke-Ke Sun, Yan-Hong Li, Lan-Ying Hu, Xiao-Yan Chen, Ying Yang, Feng Yang, Jun Tang, He-Ping Liu, and Hua Zhang

dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and in tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways Mol. Plant Pathol. 18 16 31 10.1111/mpp.12370 Moore, S. de Vries, O.M. Tudzynski

Free access

H.P.V. Rupasinghe and Richard J. Gladon

The ethylene biosynthetic pathway has been established as methionine (MET) to S-adenosylmethionine to 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, and this pathway has been labeled System I. Another pathway to ethylene may exist during synthesis of massive amounts of ethylene, and this system has been labeled System II. Our objective was to evaluate the efficacy of several compounds as possible precursors of System II ethylene in ripening tomato fruit tissue. Discs of `Rutgers' tomato pericarp tissue at the mature green, pink, and red ripe stages were incubated continuously in 10, 25, or 40 mm solutions of MET, ACC, 5-aminolevulinic acid (ALA), homocysteine, glutamic acid (GLU), alpha-ketoglutarate, or citrate buffer (control). The ethylene production rate at 8-hour intervals during a 32-hour incubation period and free and conjugated ACC content at the end of the incubation period were quantified. Fruit discs at the mature green stage treated with MET and ACC exhibited increased ethylene production and increased free ACC content. These results confirmed the role of MET and ACC as the predominant precursors of ethylene during the early stages of fruit development in tomato (System I). At the pink stage (System II); however, ALA increased ethylene production by 75% and free ACC content by 46% over the control, and MET increased ethylene by 27% and free ACC content by 57% over the control. At the red ripe stage, ALA caused a 35% increase and GLU caused a 31% increase in ethylene production over the control. These results suggest that ALA and GLU may be metabolized to ethylene via an unknown pathway during tomato fruit ripening (System II).

Free access

Clifford W. Beninger, George L. Hosfield, Mark J. Bassett, and Shirley Owens

Three common bean (Phaseolus vulgaris L.) seedcoat color (or glossiness) genotypes, differing from each other by a single substitution at a seedcoat locus, were analyzed for presence and concentration of three anthocyanins: delphinidin 3-O-glucoside, petunidin 3-O-glucoside, and malvidin 3-O-glucoside. The three anthocyanins were present in Florida common bean breeding line 5-593 (P C J G B V Asp), matte black (P C J G B V asp), and dark brown violet (P C J G b V Asp), but the amounts varied greatly depending on the genotype. Dark brown violet had 19% of the total anthocyanin content when compared to 5-593, whereas matte black had amounts intermediate between the two other genotypes. The B gene acts to regulate the production of precursors of anthocyanins in the seedcoat color pathway above the level of dihydrokaempferol formation, perhaps at the chalcone synthase or chalcone isomerase steps in the biosynthetic pathway. We hypothesize that B regulates simultaneously the flavonoid (color) and isoflavonoid (resistance) pathways. The I gene for resistance to bean common mosaic virus (BCMV) is known to be linked closely to B. It is therefore hypothesized that the I gene function may be to respond to BCMV infection by dramatically increasing (over a low constituitive level) production in the 5-dehydroxy isoflavonoid pathway, which leads to synthesis of the major phytoalexin, phaseollin, for resistance to BCMV. Alternatively, the B and I genes may be allelic. The Asp gene affects seedcoat glossiness by means of a structural change to the seedcoat. We demonstrate that Asp in the recessive condition (asp/asp) changes the size and shape of the palisade cells of the seedcoat epidermis, making them significantly smaller than either 5-593 or dark brown violet. Asp, therefore, limits the amounts of anthocyanins in the seedcoat by reducing the size of palisade cells.

Open access

George Wulster, John Sacalis, and Harry W. Janes

Abstract

Respiration of petal discs from rose (Rosa hybrida L.) was measured by standard manometric techniques gave evidence for the presence of cyanide-resistant respiration. During early stages of rose petal expansion oxygen uptake by petal discs was only slightly inhibited by ImM KCN. In conjunction with 10−1mM salicyl hydroxamic Acid (SHAM), an inhibitor specific for the alternate cyanide-resistant pathway, 1mM KCN greatly reduced oxygen uptake in these petal discs. SHAM alone had no effect on petal disc respiration.

Free access

A.S.A. Rahman, D.J. Huber, and J.K. Brecht

Bell pepper (Capsicum annum var. Jupiter) fruit were exposed to 1.5% O2 for 1 to 5 days at 20C to examine whether the low-O2-induced poststorage respiratory suppression (PRS) in whole fruit could be due to limitations in mitochondrial oxidative capacity. Mitochondrial oxidative capacity was not affected after storing bell peppers for 1 day in 1.5 % O2. Extending the storage period from 1 to 5 days in 1.5 % 0, resulted in PRS of CO2 production for about 55 hours after transfer to air, and a marked reduction in the oxidative capacity of isolated mitochondria. Mitochondrial activity was suppressed for 10 hours after transfer to air but, within 24 hours, bad recovered to values comparable to those of mitochondria from fruit stored continuously in air. Storing bell peppers in 1.5% O2 for 5 days resulted in a reduction in the respiratory control (RC), while ADP/O ratios were not affected. The reduction was temporary since the RC attained normal activity after returning bell peppers to air. Cyanide-sensitive cytochrome and CN-insensitive pathways were suppressed after storing fruit in 1.5 % O2 for 5 days. After returning fruit from a low-O2 atmosphere to air, the alternative pathway recovered at a greater rate than the cytochrome pathway.

Free access

Eleazar Reyes and Paul H. Jennings

The effect of chilling stress on induction of the cyanide-resistant pathway was investigated using roots of 3-day-old cucumber (Cucumis sativus L.) and 5-day-old pea (Pisum sativum L.) grown at 26°C, and then chilled at 2°C for 48 or 96 hours for cucumber, and 72 or 192 hours for pea. A 24-hour post-chilling treatment at 26°C was imposed on different sets of chilled roots from both crops. Carbohydrate status was determined by gas chromatography with an autosampler using a 12.5-m cross-linked methyl silicone capillary column (0.1 mm). Exposing seedlings to 2°C, as well as to a postchilling treatment, induced differential responses in the activity of the cyanide-resistant pathway. Cucumber seedling roots exhibited an accumulation of fructose, glucose and sucrose during chilling, with a rapid decline observed during the post-chilling treatment at 26°C. Pea seedling roots maintained a constant level of carbohydrates throughout the chilling period, and exhibited a slight decrease by the end of 192 hours at 2°C. There was an increase in carbohydrate levels during the post-chilling treatment. The involvement of the cyanide resistant pathway and carbohydrate changes will be discussed.

Free access

Sastry Jayanty, Mauricio Canoles, Alejandra Ferenczi, Jun Song, and Randolph Beaudry*

Volatile aroma compounds produced by apple, banana, and tomato are produced throughout development, however, those associated with ripening and edible quality are dependent upon ethylene action. In apple and banana, characteristic aroma is, in large part, dependent upon the formation of volatile esters. In tomato, many of the characteristic aromas are dependent upon tissue disruption and result from aldehydes and alcohols following lipid degradation. For apple and banana, the enzyme alcohol acyl-CoA transferase (AAT, EC 2.3.1.84) is the enzyme responsible for the final reaction in the pathway for ester formation and catalyzes the union of an alcohol and the CoA derivative of fatty acids. In both tissues, AAT gene expression was detected prior to the onset of ester production. In apple, AAT expression was found to be closely tied with the onset of autocatalytic ethylene synthesis. In banana, ethylene synthesis peaked and began to decline well before ester synthesis began. However, the expression of AAT increased as ester production increased for both tissues. Tomato fruit, like apple and banana, produced characteristic aromas following the onset of the ethylene climacteric, suggesting changes in the activity of various components of the lipoxygenase pathway. In all three tissue types, there are continuous, significant shifts in the aroma profile as fruit ripen age, suggesting shifts in specific metabolic pathways associated with precursor synthesis or degradation.

Free access

Jack D. Early Jr. and George C. Martin

Photoperiod is an important environmental signal for regulating developmental patterns in many plant species. In several species, photoperiodic regulation of gibberellin A1 biosynthesis has been implicated as the mechanism by which photoperiod may alter development. To examine this phenomenon in strawberry, Fragaria virginiana plants grown under long day (LD) and short day (SD) conditions with equivalent total PAR were examined to determine changes in vegetative growth and GA1 biosynthesis.

LD conditions (16 hr) promoted vegetative growth. Runner production, total leaf area, area of individual leaves, and petiole lengths, all increased under LD conditions. No runner production occurred under SD conditions (8 hr); however, the number of branch crowns increased.

Gibberellins A44, A19, A20, and A1, all from the GA1 biosynthetic pathway, were identified in plants under both LD and SD conditions. However, SD conditions appeared to affect the 2β-hydroxylation of GA20 to GA1. Whereas levels of most GAs decreased under SD conditions, levels of GA20 increased, and only trace amounts of GA1 were found, indicating a possible blockage of the pathway at this point. As GA1 is considered the active component of the pathway, blockage of GA20 conversion under SD conditions may explain the concomitant reduction in vegetative growth.

Free access

Pablo Gonzalez and Richard J. Gladon

Methionine (MET) is considered the first committed precursor of ethylene (C2H4), and the pathway has been established as MET → S-adenosylmethionine (SAM) → 1-aminocyclopropane-1-carboxylic acid (ACC) → C2H4. It has been suggested that another pathway to C2H4 may exist, and this pathway has been labeled System II. Our objective was to evaluate several compounds as possible precursors of System II C2H4 production. `White Sim' carnations were placed continuously in 20 mM solutions of MET, ACC, δ-aminolevulinic acid, glutamic acid, α-ketoglutarate, or homocysteine. Deionized water was the control. C2H4 production from the entire flower was measured, and ACC in the basal portion of the petals was quantified. Flowers treated with ACC exhibited the greatest C2H4 production and accumulation of ACC. Homocysteine caused greater production of C2H4 and accumulated more ACC than MET and the other possible precursors. These results suggest that homocysteine may be involved in System II C2H4 production in senescing carnation petals.