Search Results

You are looking at 151 - 160 of 368 items for :

  • "Cynodon dactylon" x
  • Refine by Access: All x
Clear All
Free access

M.L. Elliott, E.A. Guertal, and H.D. Skipper

The rhizospheres of creeping bentgrass (Agrostis palustris Huds.) and hybrid bermudagrass (Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy) putting greens were sampled quarterly for 4 years. Six bacterial groups, including total aerobic bacteria, fluorescent pseudomonads, actinomycetes, Gram-negative bacteria, Gram-positive bacteria, and heat-tolerant bacteria, were enumerated. The putting greens were located in four geographic locations (bentgrass in Alabama and North Carolina; bermudagrass in Florida and South Carolina) and were maintained according to local maintenance practices. Significant effects were observed for sampling date, turfgrass species and location, with most variation due to either turfgrass species or location. Bentgrass roots had significantly greater numbers of fluorescent pseudomonads than bermudagrass roots, while bermudagrass roots had significantly greater numbers of Gram-positive bacteria, actinomycetes and heat-tolerant bacteria. The North Carolina or South Carolina locations always had the greatest number of bacteria in each bacterial group. For most sampling dates in all four locations and both turfgrass species, there was a minimum, per gram dry root, of 107 CFUs enumerated on the total aerobic bacterial medium and a minimum of 105 CFUs enumerated on the actinomycete bacterial medium. Thus, it appears that in the southeastern U.S. there are large numbers of culturable bacteria in putting green rhizospheres that are relatively stable over time and geographic location.

Free access

G.E. Bell, B.M. Howell, G.V. Johnson, W.R. Raun, J.B. Solie, and M.L. Stone

Differences in soil microenvironment affect the availability of N in small areas of large turfgrass stands. Optical sensing may provide a method for assessing plant N needs among these small areas and could help improve turfgrass uniformity. The purpose of this study was to determine if optical sensing was useful for measuring turfgrass responses stimulated by N fertilization. Areas of `U3' bermudagrass [Cynodon dactylon (L.) Pers.], `Midfield' bermudagrass [C. dactylon (L.) Pers. × C. transvaalensis Burtt-Davy], and `SR1020' creeping bentgrass (Agrostis palustris Huds.) were divided into randomized complete blocks and fertilized with different N rates. A spectrometer was used to measure energy reflected from the turfgrass within the experimental units at 350 to1100 nm wavelengths. This spectral information was used to calculate normalized difference vegetation index (NDVI) and green normalized difference vegetation index (GNDVI). These spectral indices were regressed with tissue N and chlorophyll content determined from turfgrass clippings collected immediately following optical sensing. The coefficients of determination for NDVI and GNDVI regressed with tissue N averaged r 2 = 0.76 and r2 = 0.81, respectively. The coefficients of determination for NDVI and GNDVI regressed with chlorophyll averaged r 2 = 0.70 and r 2 = 0.75, respectively. Optical sensing was equally effective for estimating turfgrass responses to N fertilization as more commonly used evaluations such as shoot growth rate (SGR regressed with tissue N; r 2 = 0.81) and visual color evaluation (color regressed with chlorophyll; r 2 = 0.64).

Free access

Kenneth B. Marcum, Mohammad Pessarakli, and David M. Kopec

Relative salinity tolerance of 21 desert saltgrass accessions (Distichlis spicata [L.] Greene var. stricta (Torr.) Beetle), and one hybrid bermudagrass `Midiron' (Cynodon dactylon [L.] Pers. var. dactylon × C. transvaalensis Burtt-Davy `Midiron') were determined via solution culture in a controlled-environment greenhouse. Salinity in treatment tanks was gradually raised, and grasses progressively exposed to 0.2, 0.4, 0.6, 0.8, and 1.0 m total salinity in sequence. Grasses were held at each salinity level for 1 week, followed by determination of relative salinity injury. Relative (to control) live green shoot weight (SW), relative root weight (RW), and % canopy green leaf area (GLA) were highly correlated with one-another (all r values >0.7), being mutually effective indicators of relative salinity tolerance. The range of salinity tolerance among desert saltgrass accessions was substantial, though all were more tolerant than bermudagrass. Accessions A77, A48, and A55 suffered little visual shoot injury, and continued shoot and root growth at a low level, when exposed up to 1.0 m (71,625 mg·L–1); sea water is about 35,000 mg·L–1), and therefore can be considered halophytes.

Free access

Hassan Salehi and Morteza Khosh-Khui

Turfgrass seeds can be sown individually, in mixes, or overseeded to provide green color and uniform surfaces in all the seasons. This investigation was conducted to compare different turfgrass species and their seed mixtures. In this research, the turfgrasses—perennial ryegrass (Lolium perenne L. `Barball'), kentucky bluegrass (Poa pratensis L. `Merion'), common bermudagrass (Cynodon dactylon [L.] Pers.), and strong creeping red fescue (Festuca rubra L. var. rubra `Shadow')—in monoculture or in mixtures of 1:1 (by weight) and a 1:1:1:1 (by weight) and two sport turfgrasses—BAR 11 (Barenbrug Co.) and MM (Mommersteeg Co.)—were used. The seeds were sown in March and October (spring and fall sowing) in 1998 and 1999. The experiments were conducted in a split-split block design with year as main plot, sowing season as subplot, and turfgrass types as subsubplot. The turfgrasses were compared by measuring visual quality, chlorophyll index after winter and summer, rooting depth, verdure and/or root fresh and dry weight, tiller density, and clippings fresh and dry weight. Fall sowing was superior to spring sowing and resulted in greater root growth, clipping yield, and chlorophyll content. Poa+Cynodon seed mixture was the best treatment and had high tiller density, root growth, and chlorophyll content. Lolium and Festuca monocultures, and Poa+Festuca and Cynodon+Festuca seed mixtures were not suitable with regard to low tiller density, sensitivity to high temperatures, low root growth, and low tiller density, respectively. The cool-warm-season seed mixture (Poa+Cynodon) can be used alternatively in overseeding programs in the areas with soil and environmental conditions similar to this research site.

Free access

Patrick E. McCullough, Haibo Liu, Lambert B. McCarty, Ted Whitwell, and Joe E. Toler

Dwarf-type bermudagrasses [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davey] tolerate long-term golf green mowing heights but require heavy nitrogen (N) fertilizations. Inhibiting leaf growth with trinexapac-ethyl (TE) could reduce shoot growth competition for root reserves and improve nutrient use efficiency. Two greenhouse experiments evaluated four N levels, 6 (N6), 12 (N12), 18 (N18), and 24 (N24) kg N/ha/week, with TE at 0 and 0.05 kg·ha–1 a.i. every 3 weeks to assess rooting, nutrient allocation, clipping yield, and chlorophyll concentration of `TifEagle' bermudagrass grown in PVC containers built to U.S. Golf Association specification. Trinexapac-ethyl enhanced turf quality on every date after initial application. After 8 weeks, high N rates caused turf quality decline; however, TE treated turf averaged about 25% higher visual quality from nontreated turf, masking quality decline of high N fertility. `TifEagle' bermudagrass treated with TE had clippings reduced 52% to 61% from non-TE treated. After 16 weeks, bermudagrass treated with TE over all N levels had 43% greater root mass and 23% enhanced root length. Compared to non-TE treated turf, leaf N, P, and K concentrations were consistently lower in TE treated turf while Ca and Mg concentrations were increased. Root N concentrations in TE treated turf were 8% to 11% higher for N12, N18, and N24 fertilized turf than respective N rates without TE. Compared to non-TE treated turf, clipping nutrient recoveries were reduced 69% to 79% by TE with 25% to 105% greater nutrients recovered in roots. Bermudagrass treated with TE had higher total chlorophyll concentrations after 8 and 12 weeks. Overall, inhibiting `TifEagle' bermudagrass leaf growth appears to reallocate nutrients to belowground tissues, thus improving nutrient use efficiency and root growth. Chemical name used: trinexapac-ethyl, [4-(cyclopropyl-[α]-hydroxymethylene)-3,5-dioxo-cyclohexane carboxylic acid ethylester].

Free access

Lloyd M. Callahan and Joe W. High Jr.

A bermudagrass [Cynodon dactylon (L) Pers. × C. transvaalensis Burtt-Davy `Tifgreen'] lawn in the transition zone (about lat. 35°N) was treated in late March for 3 years with a high and a low level each of benefin, bensulide, DCPA, oxadiazon, and siduron. Objectives were to determine if relationships exist between field environment and dates of preemergence herbicide applications for large crabgrass (Digitaria sanguinalis L. Scop.) control, the spring root decline (SRD) phenomenon, and herbicide phytotoxicity to the bermudagrass. Herbicide treatments in late March generally controlled large crabgrass, reduced total weed competition, and appeared to aid bermudagrass spring growth following winter dormancy. Herbicide injury to `Tifgreen' bermudagrass roots during SRD does occur under practical field conditions and was more severe when bermudagrass spring green-up occurred closer to the herbicide treatment date, as in 1982. Bermudagrass stand density was significantly reduced with the high level of siduron in 1980 and 1981, and with both levels of oxadiazon and siduron in 1982. Bensulide and oxadiazon, at both levels, gave 92% to 100% crabgrass control during all three treatment years. The high levels of benefin and DCPA in 1980, both levels of benefin and the high level of DCPA in 1981, and both levels of DCPA and the high level of benefin in 1982 gave crabgrass control in excess of 95%. Chemical names used: N-butyl-N-ethyl-2,6-dinitro-4-(trifluoromethyl)-benzenamine (benefin), O,O-bis(1-methylethyl)-S-[2-[(phenylsulfony l)-amino]ethyl] phosphorodithioate (bensulide), dimethyl 2,3,5,6-tetra-chloro-1,4-benzenedicarboxylate (DCPA), 3-[2,4-dichloro-5-(1-methylethoxy)phenyl]-5-(l,l-dimethylethyl)-l,3,4-oxadiazol-2 -(3H)-one (oxadiazon), N-(2-methylcyclohexyl)-N'-phenylurea (siduron).

Free access

Billy J. Johnson, Robert N. Carrow, and Tim R. Murphy

Field experiments were conducted to determine the effects of foliar iron (Fe) applied with postemergence herbicides on injury, color, and quality of `Tifway' bermudagrass [Cynodon transvaalensis Burtt-Davy × Cynodon dactylon (L.) Pers.]. Iron significantly decreased injury and improved quality and color of `Tifway' bermudagrass in conjunction with herbicide treatment. Turf injury was less for 4 to 18 days after the initial MSMA application when Fe was added. Injury was also less from sequential Fe treatment with MSMA + metribuzin (up to 4 days) and MSMA + imazaquin (from 4 to 10 days) compared to the respective herbicides applied alone. There was no difference in turf injury from Fe when imazaquin at 1.3 kg·ha-1 was applied as a single treatment. However, turf treated with Fe and two applications of imazaquin (9- to 10-day interval) recovered from herbicide injury faster than when treated only with the herbicide. Iron did not prevent immediate 2,4-D + mecoprop + dicamba injury to the bermudagrass, but did hasten turf recovery from injury at 26 days after treatment. With a few exceptions, `Tifway' bermudagrass quality was higher and color improved when Fe was added. However, injury expressed as loss of shoot density was not affected by Fe and only injury expressed as color loss was improved by Fe. Chemical names used: 3,6-dichloro-2-methoxybenzoic acid (dicamba), 2-[4,5-dihydro-4-methyl)-4-(1-methylethyl)-5-oxo-1H-imidazol-2yl]-3-quinolinecarboxylic acid (imazaquin), (±)-2-(4-chloro-2-methylphenoxy)propanoic acid (mecoprop), 4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one (metribuzin), monosodium salt of MAA (MSMA), and (2,4-dichlorophenoxy)acetic acid (2,4-D).

Free access

Brian J. Tucker, Lambert B. McCarty, Haibo Liu, Christina E. Wells, and James R. Rieck

As golfers demand higher quality golf green putting surfaces, researchers continue to seek improved turfgrass cultivars. One such improved cultivar is `TifEagle' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy], which is an improvement over traditional bermudagrass cultivars such as `Tifgreen' and `Tifdwarf' due to its ability to tolerate mowing heights of ≤3.2 mm for extended periods. One observed disadvantage of `TifEagle' is its lack of a deep, dense root system compared to previous bermudagrass cultivars. This field study measured mowing height, N rate, and biostimulant product effects on `TifEagle' rooting. Three mowing heights (3.2, 4.0, and 4.8 mm), three N rates (12, 24, and 48 kg N/ha/week), and two cytokinin-containing commercial biostimulant products (BIO1 and BIO2) were examined. Plant responses measured were root length density (RLD), root surface area (RSA), thatch layer depth (TLD), and turf quality (TQ). Increasing mowing height from 3.2 to 4.0 mm increased RLD by >11%, RSA by >11%, and TQ by >17%. Increasing N rates from 12 to 24 kg N ha-1 week-1 increased RLD by >17%, RSA by >26% and TQ by >16%. No effect on RLD was observed after the first year of biostimulant use, however, after the second year, BIO1 increased RLD by >11% when applied with the lowest rate of N (12 kg N/ha/week). Higher mowing heights (4.8 and 4.0 mm) increased TLD >6% compared to the lowest mowing height (3.2 mm), and higher N rates (48 and 24 kg N/ha/week) increased TLD >3% compared to the lowest N rate (12 kg N/ha/week). Overall, a mowing heights ≥4.0 mm, N rates ≥24 kg N/ha/week, and long-term use of a cytokinins-containing biostimulant had a positive effect on `TifEagle' rooting.

Full access

S. Severmutlu, N. Mutlu, R.C. Shearman, E. Gurbuz, O. Gulsen, M. Hocagil, O. Karaguzel, T. Heng-Moss, T.P. Riordan, and R.E. Gaussoin

Warm-season turfgrasses are grown throughout the warm humid, sub-humid, and semiarid regions. The objective of this study was to determine the adaptation of six warm-season turfgrass species and several of their cultivars to Mediterranean growing conditions of Turkey by evaluating turfgrass establishment rate, quality, color, and percentage of turfgrass cover. Information of this nature is lacking and would be helpful to turfgrass managers and advisers working in the region. A study was conducted over a 2-year period in two locations of the Mediterranean region of Turkey. The warm-season turfgrass species studied were bermudagrass (Cynodon dactylon), buffalograss (Buchloë dactyloides), zoysiagrass (Zoysia japonica), bahiagrass (Paspalum notatum), seashore paspalum (Paspalum vaginatum), and centipedegrass (Eremochloa ophiurioides). Tall fescue (Festuca arundinacea) was included as a cool-season turfgrass species for comparison. Twenty cultivars belonging to these species were evaluated for their establishment, turfgrass color and quality, spring green-up, and fall color retention. Bermudagrass, bahiagrass, and seashore paspalum established 95% or better coverage at 1095 growing degree days [GDD (5 °C base temperature)], buffalograss and centipedegrass at 1436 GDD, and ‘Zenith’ and ‘Companion’ Zoysiagrass had 90% and 84% coverage at Antalya after accumulating 2031 GDD. ‘Sea Spray’ seashore paspalum; ‘SWI-1044’, ‘SWI-1045’, ‘Princess 77’, and ‘Riviera’ bermudagrass; ‘Cody’ buffalograss; and ‘Zenith’ zoysiagrass exhibited acceptable turfgrass quality for 7 months throughout the growing season. ‘Argentine’ and ‘Pensacola’ bahiagrass; ‘Sea Spray’ seashore paspalum; and ‘SWI-1044’ and ‘SWI-1045’ bermudagrass extended their growing season by retaining their green color 15 days or longer than the rest of the warm-season cultivars and/or species in the fall. The warm-season species stayed fully dormant throughout January and February. Zoysiagrass and buffalograss cultivars showed early spring green-up compared to the other warm-season species studied. Results from this study support the use of warm-season turfgrass species in this Mediterranean region, especially when heat stress and water limitations exist. Tall fescue did not survive summer heat stress necessitating reseeding in fall.

Full access

L.R. Nelson, J. Crowder, and H.B. Pemberton

Perennial ryegrass (Lolium perenne) has traditionally been used to overseed warm-season grasses in the southern U.S. when warm-season sods are dormant due to chilling temperatures. In this study we investigated overseeding turf-type annual ryegrass (two cultivars of L. multiflorum and one cultivar of L. rigidum) and chewing fescue (Festuca rubra var. commutata) as well as perennial ryegrass onto a warm-season common bermudagrass (Cynodon dactylon) sod. The objective was to compare turf quality, turf color, and transition date of turf-type annuals with perennials and other cool-season grasses. Results for turf quality indicated that the annual ryegrass cultivars `Axcella' and `Panterra' (L. multiflorum) compared very well with perennials through March; however, in April and May, perennials were superior for quality. `Hardtop' fine fescue is a hard fescue (F. ovina var. duriuscula). It was inferior to the annuals for turf quality from December to April when the annuals began to die. For turf color, annuals had a lower rating compared to dark green perennials such as `Premier II', `Derby Supreme', or `Allstar'. `Panterra' was darker compared to `Axcella' in March and April. Chewing fescue was intermediate in color compared to annuals and perennials. For turf height, `Axcella' was taller than `Panterra', which were both taller than the perennials, and the fine fescues were shorter than the perennials. For transition in the spring, the annuals had a shorter transition and died about 1 month earlier than the perennials. `Transtar' (L. rigidum) had an earlier transition than the other annuals. The perennials tended to have a longer transition period. The fescues had a very long transition period and were similar to the perennials.