Search Results

You are looking at 141 - 150 of 1,285 items for :

  • season extender x
  • Refine by Access: All x
Clear All
Free access

Yin-Tung Wang

An experiment was initiated to determine the effect of a low N, high P and K fertilizer applied during the flowering season on a hybrid moth orchid (Phalaenopsis TAM Butterfly Blume.). On 1 Sept., plants of flowering size receiving N, P, and K at 100, 44, and 83 mg·L–1, respectively, from a 20N–8.8P–16.6K soluble fertilizer were given N, P, and K, at 30, 398, and 506 mg·L–1 (high P), respectively, at each or every fourth irrigation. Control plants continued to receive the 20N–8.8P–16.6K fertilizer. The high P treatments, regardless of the frequency of application, had no effect on the date of emergence of the flowering stem (spiking), anthesis, or flower size. All plants treated with the high P fertilizer had fewer flowers (15 to 19) than the controls (24 flowers). Continuous application of adequate N appears to be more important than low N and increased P for optimal flowering. In a separate experiment using the same hybrid orchid, terminating fertilization completely on 1 Sept., 29 Sept., or 27 Oct. or when the flowering stems were emerging (1 Oct.) reduced flower count (≤19 vs. 24). Flower longevity was reduced by 12 d when fertilization was terminated on 1 Sept. Flower size was unaffected by any treatment in either experiment. Discontinuing fertilization prior to late November reduced flower count. Withholding fertilization for extended periods resulted in red leaves, loss of the lower leaves, and limited production of new leaves.

Full access

Maryse L. Leblanc, Daniel C. Cloutier, and Katrine A. Stewart

A 2-year study was conducted to assess sweet corn (Zea mays) susceptibility to mechanical weeding using a rotary hoe at preemergence to six-leaf stages of corn development and at different combinations of stages. Three sweet corn cultivars: early (`Quickie'), mid (`July Gem'), and late season (`Sensor') were seeded at two sowing dates. The experiment was conducted in a weed-free environment. In general, sweet corn could be cultivated with the rotary hoe at least once without yield reduction from preemergence to the six-leaf stage. Cob numbers were reduced and maturity delayed after three or four cultivations with the rotary hoe. The rotary hoe could be an effective tool in controlling weeds in an integrated weed management approach or for organic sweet corn production since it cultivates both within and between the rows. The rotary hoe, which covers a large area in a short time, can be used at later growth stages, extending the time period during which it can be used without damaging the crop and reducing yield.

Full access

Robert F. Brzuszek, Richard L. Harkess, and Eric Stortz

reveal that for this group of mostly seasoned practitioners in the residential design market, they feel they have a favorable opinion of their own plant knowledge. Of more concern, they feel that recent graduates in landscape architecture have

Full access

Aditi Satpute, Bryce Meyering, and Ute Albrecht

processed in the same manner to determine weight loss of leaves during postharvest storage. CI assessment CI ratings were conducted on a scale of 0 to 5. Ratings were based on size and extend of necrosis on the leaf surface with 0 = no visible damage, 1

Full access

James E. Ells, Ann E. McSay, E. Gordon Kruse, and Gregory Larson

Squash (Cucurbita pepo L. var. pepo) plants were grown on black polyethylene mulch or on bare ground, with trickle or furrow irrigation, and received only natural rainfall, or natural rainfall plus half or all of the estimated supplemental irrigation water required as determined by an irrigation scheduling program. The squash roots predominate in the upper 6 inches of soil throughout the season, with no less than 60% of the root mass located in this layer. The proliferation of roots increased as they extended horizontally from the vertical center line of the plant from 0 to 24 inches. Neither the irrigation treatments nor black polyethylene mulch had any influence on the pattern of root development. Water stress, however, reduced the size of the root system and the crop yield. Yields were not influenced by either furrow or trickle irrigation on the short rows that were used in this study. However, black polyethylene mulch and full irrigation offered the best chance of maximizing squash yields under the conditions of this study.

Full access

Laurie Hodges and James R. Brandle

Windbreaks reduce wind speed and modify the microclimate in sheltered areas. Many producers use wind barriers in their production systems, but few producers recognize all of the benefits available or understand the principles involved in windbreak function and design. Wind has direct and indirect effects on plant growth and development. Direct effects include soil abrasion, increased transpiration, and lodging. Indirect effects are based on changes in the crop microclimate, which influence plant growth and yield. Windbreaks increase soil and air temperatures and can extend the growing season in sheltered areas, resulting in increased crop development, earlier crop maturity, and market advantage. Plant-water relations and irrigation efficiency are improved by shelter. Overall, modifications to the microclimate in sheltered areas contribute to 5% to 50% higher crop yields. Winds in excess of about 5 m·s−1 (1.0 m·s−1 = 2.25 miles/h; miles/h × 0.447 = m·s−1) result in wind erosion and soil abrasion and may cause a loss of crop stand. Wind speeds below 5 m·s−1 may have an equally adverse impact on crop quality and marketable yield. In both cases, wind-breaks can reduce damage effectively in sheltered areas. Wind protection reduces certain problems associated with plasticulture under windy conditions.

Free access

B.W. Wood

Alternately bearing `Cheyenne' pecan [Carya illinoensis (Wangenh.) K. Koch] trees were studied to assess the temporal aspects of previous season fruit development on several reproductive and vegetative traits of horticultural importance. Action spectra were generated and used to identify the relative sensitivities of these traits to the temporal aspects of fruiting. Based on date of maximum rate of change in sigmoidal models fitted to these action spectra, the relative sensitivity of certain important growth and developmental parameters to fruit removal time was number of distillate flowers per terminal shoot > number of distillate flowers per flower cluster on lateral shoots> length of terminal shoots > percentage of lateral shoots with fruit= catkins per terminal shoot at top of the tree> percentage of terminal shoots with fruit > catkins per standard terminal shoot> shoots produced per l-year-old branch> percentage of l-year-old shoot death. Maximum rates of change for these reproductive and vegetative parameters were typically during the dough stage of ovule development; however, substantial change also occurred for several parameters over a much wider developmental window. No evidence was found for a hormone-like translocatable factor from developing fruit that either promotes or inhibits flowering. Extending the time from nut ripening to leaf drop increased production of staminate and distillate flowers the following year and appeared to increase fruit set.

Full access

Virginia I. Lohr

. Weather extremes consistent with predictions from climate change and global warming models are already occurring. For example, the U.S. Environmental Protection Agency (EPA) reports that the growing season in the 48 contiguous U.S. states has been above

Free access

Richard L. Bell*, Tom van der Zwet, and Diane D. Miller

`Shenandoah' is a new European pear (Pyrus communis L.) cultivar which combines resistance to fire blight with fruit of excellent quality. The original seedling tree was selected in 1985 from a cross of `Max Red Bartlett'× US 56112-146, and was tested under the original seedling number, US 78304-057. The fruit of `Shenandoah' is pyriform in shape, and moderately large in size, averaging 72 mm in diameter and 92 mm in height. Skin color at harvest is light green, turning yellow-green when ripe. The skin finish is glossy, and 10% to 20% of the fruit surface is blushed red. There is light tan russet at the calyx. Lenticles are slightly conspicuous, and are surrounded by small, light brown russet. The stem is medium to long (≈25 mm), of medium thickness, and slightly curved. Harvest maturity occurs about four weeks after `Bartlett', and the fruit will store in refrigerated (-1 °C) air storage for at least four months without core breakdown or superficial scald. The flesh texture is moderately fine, juicy, and buttery. Grit cells are moderately small and occur primarily around the core and in a thin layer under the skin. The flavor is aromatic, similar to `Bartlett', and is moderately acidic during the first two months of storage, becoming subacid after longer storage. The tree is moderate in vigor on `Bartlett' seedling and `OHxF 97' rootstocks, and upright-spreading in habit. Shenandoah' blooms in mid-season, similar to `Bartlett'. Yield has been moderately high and precocious, and with no pronounced biennial pattern. Fire blight resistance is similar to `Seckel', with infections extending no further than 1-year-old branches. Artificial blossom inoculations indicate a moderate degree of blossom resistance to fire blight infection.

Free access

Monica Ozores-Hampton, Eric Simonne, Eugene McAvoy, Phil Stansly, Sanjay Shukla, Fritz Roka, Tom Obreza, Kent Cushman, Phyllis Gilreath, and Darrin Parmenter

Florida tomato growers generate about $600 million of annual farm gate sales. The Florida Vegetable and Agronomic Crop Water Quality/Quantity Best Management Practices Manual was adopted by rule in the Florida Administrative Code in 2006 and describes cultural practices available to tomato growers that have the potential to improve water quality. By definition, BMPs are specific cultural practices that are proven to optimize yield while minimizing pollution. BMPs must be technically feasible, economically viable, socially acceptable, and based on sound science. The BMP manual for vegetables endorses UF-IFAS recommendations, including those for fertilization and irrigation. Current statewide N fertilizer recommendations for tomato provide for a base rate of 224 kg/ha plus provisions for supplemental fertilizer applications 1) after a leaching rain, 2) under extended harvest season, and 3) when plant nutrient levels (leaf or petiole) fall below the sufficiency range. An on-farm project in seven commercial fields was conducted in 2004 under cool and dry growing conditions, to compare grower practices (ranging from 264 to 468 kg/ha of N) to the recommended rate. Early and total extra-large yields tended to be higher with growers' rate than with the recommended rate, but these differences were significant only in one trial. The first-year results illustrated the need for recommendations to be tested for several years and to provide flexibility to account for the reality of local growing conditions. Working one-on-one with commercial growers provided an opportunity to focus on each farm`s educational needs and to identify specific improvements in nutrient and irrigation management.