Search Results

You are looking at 131 - 140 of 584 items for :

  • Refine by Access: All x
Clear All
Free access

Barbara L. Goulart, Philip E. Hammer, Kathleen B. Evensen, Wojciech Janisiewicz, and Fumiomi Takeda

The effects of preharvest applications of pyrrolnitrin (a biologically derived fungicide) on postharvest longevity of `Bristol' black raspberry (Rubus occidentals L.) and `Heritage' red raspberry [R. idaeus L. var. strigosus (Michx.) Maxim] were evaluated at two storage temperatures. Preharvest fungicide treatments were 200 mg pyrrolnitrin/liter, a standard fungicide treatment (captan + benomyl or iprodione) or a distilled water control applied 1 day before first harvest. Black raspberries were stored at 18 or 0 ± lC in air or 20% CO2. Red raspberries were stored at the same temperatures in air only. Pyrrolnitrin-treated berries often had less gray mold (Botrytis cinerea Pers. ex Fr.) in storage than the control but more than berries treated with the standard fungicides. Storage in a modified atmosphere of 20% CO2 greatly improved postharvest quality of black raspberries at both storage temperatures by reducing gray mold development. The combination of standard fungicide or pyrrolnitrin, high CO2, and low temperature resulted in more than 2 weeks of storage with less than 5% disease on black raspberries; however, discoloration limited marketability after≈ 8 days under these conditions. Chemical names used: 3-chloro-4-(2'-nitro-3'-chlorophenyl) -pyrrole (pyrrolnitrin); N-trichloromethylthio-4-cyclohexene-l12-dicarboximide (captan); methyl 1-(butylcarbamoyl) -2-benzimidazolecarbamate) (benomyl); 3-(3,5 -dichlorophenyl) -N-(l-methylethyl -2,4-dioxo-l-imi-dazolidinecarboxamide (Rovral, iprodione).

Free access

David L. Trinka and Marvin P. Pritts

Micropropagated (MP) raspberries (Rubus idaeus L. var. idaeus) are sensitive to moisture and temperature extremes and to certain preemergent herbicides used at transplanting. We examined fertilizer placement and row covers in conjunction with various weed management strategies to identify beneficial practices for newly planted, MP primocane-fruiting `Heritage' raspberries. Uncontrolled weed growth during plant establishment inhibited raspberry cane growth and production into the second and third growing seasons. Handweeding and herbicide treatments successfully controlled weeds, but soil moisture was apparently insufficient for optimum growth of the MP raspberries when these treatments were imposed, even with normal rainfall in early summer and drip irrigation in late summer. Polyethylene and straw mulches during the establishment year provided both weed control and adequate soil moisture, resulting in more cane growth in the first and 2nd year, and higher yields the 2nd year. Primocane density after the third growing season still was influenced by first-year weed management practices. Raspberry plants responded best to straw mulch without row covers as plant growth was better in both years. Canes were thicker, yields were higher, and a larger portion of the total crop was harvested early. Row covers were beneficial only in bare-soil treatments, and method of fertilizer placement had no effect on any measured variable. Mulching newly transplanted MP raspberries is an alternative to herbicide use that also provides physiological benefits to the plant through microclimate modification.

Free access

Shiow Y. Wang and Hsin-Shan Lin

Fruit and leaves from different cultivars of thornless blackberry (Rubus sp.), red raspberry (Rubus idaeus L.), black raspberry (Rubus occidentalis L.), and strawberry (Fragaria × ananassa D.) plants were analyzed for total antioxidant capacity (oxygen radical absorbance capacity, ORAC) and total phenolic content. In addition, fruit were analyzed for total anthocyanin content. Compared to fruit, leaves were found to have higher ORAC values. In fruit, ORAC values ranged from 7.8 to 33.7 μmol Trolox equivalents (TE)/g of fresh berries, while in leaves, ORAC values ranged from 20.8 to 45.6 μmol TE/g of fresh leaves. Fruit harvested at different stages of maturity were analyzed in blackberries, raspberries, and strawberries. Blackberries and strawberries had their highest ORAC values during the green stages, while raspberries generally had the highest ORAC activity at the ripe stage (with exception of cv. Jewel, a black raspberry). Total anthocyanin content increased with maturity for all three fruit. There was a linear correlation existed between total phenolic content and ORAC activity for fruit and leaves. For ripe berries, there was also a linear relationship between ORAC values and anthocyanin content. Of the ripe fruit and leaves tested, raspberry plants appeared to be the richest source for antioxidants.

Free access

Thomas J. Burr, Cheryl L. Reid, Barbara H. Katz, Maria Elisabetta Tagliati, Carlo Bazzi, and Deborah I. Breth

Agrobacterium radiobacter (Beijerinc and van Delden) Conn strain K-84 failed to control raspberry (Rubus idaeus L.) crown gall caused by A. tumefaciens (E.F. Smith and Townsend) Conn. Agrobacterium tumefaciens strains isolated from galls on plants that had been treated with K-84 were not sensitive to agrocin 84 in vitro. These strains were isolated from `Titan' and `Hilton' raspberry in New York state and from `Himbo Queen' and `Schönemann' raspberry in Italy. Almost all strains were identified as A. tumefaciens biovar 2. Raspberry crown gall was not controlled by K-84 in three field experiments in New York state. In two of the experiments, plants were produced by micropropagation and were known to be pathogen-free. The other plant source was shown to be contaminated with the pathogen before treatment with K-84. Crown gall was not controlled either on raspberry in a greenhouse experiment or on Kalanchoe diagremintiana (Hamet. and Perrier) plants that were coinoculated with K-84 and strains of A. tumefaciens isolated from galls on raspberry.

Free access

Carol D. Robacker and Sloane M. Scheiber

Abelia ×grandiflora is a drought-tolerant, pest-resistant, flowering shrub that has long been used as a foundation plant. Interspecific hybridization has produced seedlings with an assortment of morphological traits, allowing for development of new cultivars with unique or improved qualities. `Raspberry Profusion' and `Lavender Mist', developed at the University of Georgia, are seedling selections of `Edward Goucher' × Abelia chinensis. `Raspberry Profusion' is a very heavy and very early bloomer. Panicles are large and showy with fragrant pink flowers and raspberry-colored sepals. Flowering begins in early May and becomes very heavy by early June. The bright-colored sepals remain on the plant throughout the summer. Summer foliage is a medium to dark green color. In a pot, `Raspberry Profusion' blooms early and heavily. `Lavender Mist' is a heavy bloomer, with clusters of fragrant lavender flowers beginning in mid-June, and continuing into autumn. Sepals are a straw-green color at the base, becoming rose at the tips. Summer foliage is gray-green. `Lavender Mist' performs well in a pot, forming a gray-green mound contrasting with the lavender blossoms scattered around the plant. Leaves on both cultivars are glossy, particularly from mid-summer through autumn. Both plants tend to be mostly deciduous in the winter. Laboratory evaluations of cold hardiness in Griffin, Ga., during Winter 2003–04 revealed a mid-winter hardiness of –18 °C to –21 °C for `Raspberry Profusion' and –15 °C to –17 °C for `Lavender Mist'. These plants develop into dense compact shrubs following pruning and establishment in the landscape.

Free access

Jose Lopez-Medina, B.J. Murphy, and J.N. Moore

Isozyme staining and SDS-PAGE of soluble proteins were performed using leaf homogenates from 6- to 8-month-old field-grown seedlings resulting from the cross of either `Heritage' or `Nova' raspberry with ARK-577 diploid blackberry, the latter used as the pollen-donor parent. Four enzyme systems were tested: ADH, PGM, MDH, and PGI. Of these, ADH and PGM did not show any activity; MDH was monomorphic in both raspberry and blackberry parents, with activity at the same migration distance. PGI was polymorphic in the two raspberry cultivars, showing three dimeric bands, but monomorphic in blackberry; the allele for PGI in blackberry being common to that allele coding for the most cathodal band in raspberry. This phenomenon, in addition to poor resolution of bands (due, perhaps to low enzyme activity) and evidence of accidental self-pollination in our populations, prevented us from positively identifying the hybrid offspring using isozymes. By SDS-PAGE of soluble proteins, two bands were detected that seemed to be unique to ARK-577 blackberry and were also expressed in some of the offspring, suggesting a hybrid origin of these seedlings. Morphological comparisons indicated that those seedlings possessing the two unique bands highly resemble the blackberry male parent, greatly supporting their hybrid origin. Unless additional analysis shows otherwise, SDS-PAGE can be used to identify Raspberry–Blackberry hybrids during their vegetative stage of development, and might prove applicable to other interspecific hybrids of Rubus.

Free access

James N. Moore

Blackberries have long been a popular fruit in the southern U.S., and they are widely grown there, with excellent potential for expanded production. Raspberries are also well-liked, but not widely grown, due to lack of adapted cultivars. Great progress has been made, particularly in the past four decades, in improving blackberry cultivars for the South, but little effort has been given to raspberry improvement. Germplasm exists within Rubus to provide great advances in conventional cultivar improvement in both subgenera and for creating new types of fruits through interspecific hybridization. Germplasm and breeding strategies will be discussed that would result in new cultivars to serve as the foundation on which to build much expanded blackberry and raspberry industries in the southern United States.

Free access

Jeremy A. Pattison*, Suren K. Samuelian, and Courtney A. Weber

RAPD and AFLP markers were first used to construct a molecular map in a BC1 red raspberry population consisting of 70 individuals that segregated for Phytophthora root rot resistance. RAPD markers linked to root rot resistance were identified by bulk segregant analysis and through QTL anlaysis. Two common genomic regions were identified by both analyses and were estimated to explain ≈50% of the phenotypic variation. RAPD markers flanking the QTL were cloned and made into sequence specific markers for potential use in marker assisted selection. In addition to the linked markers, RAPDs spread throughout the linkage map were also sequenced and developed into either SCARs, CAPs, or codominant SSRs. Attempts were made to locate red raspberry resistance gene analogs using degenerate primers designed on conserved regions encoding known resistance genes. Results on the type and map position of identified RGA's and selection efficiency of linked markers analyzed in red raspberry cultivars of characterized root rot resistance will be discussed.

Free access

K.E. Maloney, M.P. Pritts, W.F. Wilcox, and M.E. Sorrells

Phytophthora is a severe root rot disease in most raspberry production regions throughout the world. Disease control options are limited to raised bed culture and fungicide applications. Few Phytophthora-resistant varieties are available that have commercial quality. Little is known about how soil amendments (i.e., composts, fertilizers, and limestones) influence Phytophthora control in raspberry. We evaluated the effects of preplant soil modification on the incidence of Phytophthora root rot in red raspberries. The experiment was conducted simultaneously at two sites to differentiate between the nutritional value of the amendments and the disease control value. One site has a known history of Phytophthora and a the second site is assumed to be free of the causal organism. Raspberry plant growth and fruit yield measurements were taken for all treatments. Preplant soil application of Gypsum (CaSo4) and post-plant applications of phosphorous acid sprays (H3PO3) had the greatest fruit yields compared to all other treatments in the Phytophthora-infested site. Gypsum-treated plots had greater cane diameter, cane height, and cane density compared to the control plots on the Phytophthorainfested site. A second experiment was conducted to further investigate the use of gypsum for control of Phytophthora in raspberries. Field soil was collected for use as potting medium from each of the aforementioned sites and pathogen free `Titan' plants were established in the greenhouse. After subsequent floodings, gypsum-treated soils delayed foliar disease symptoms compared to the control plots. At the end of the experiment, the control plants had 100% foliar disease symptoms and gypsum-treated pots had 33% disease symptoms. This study suggests that gypsum could be used in an integrated approach to Phytophthora management in raspberries. Future research should identify minimal effective rates of gypsum, examine other calcium sources, and determine effectiveness in other fruit crops.

Free access

Ribo Deng and Danielle Donnelly

Labeled (`“C) compounds were recovered from tissue disks taken from 14CO2-fed leaves of l-year-old greenhouse-grown plants and l-month-old ex vitro transplants of red raspberry (Rubus idaeus L.) by hot (boiling in 80% ethanol immediately after 14C exposure), delayed-hot (boiling in 80% ethanol after a 2- to 3-day ethanol soak), and room-temperature (RT) (2-to 3-day soak in 80% ethanol) extraction methods. The RT extraction method was simple but as effective for extracting 14C-labeled compounds from red raspberry leaf tissues as hot and delayed-hot extraction methods.