Search Results

You are looking at 131 - 140 of 341 items for :

  • "leaf water potential" x
  • Refine by Access: All x
Clear All
Free access

Roger Kjelgren

Changes in foliage temperature with environmental conditions were investigated for use in detecting water stress and scheduling irrigations of woody nursery plants. Midday leaf-minus-air temperature (Tl-Ta) and vapor pressure deficit (VPD) were monitored seasonally for container-grown shrubs--prostrate juniper, upright juniper and dwarf red-stem dogwood--at open and closed spacings. There was an inverse relationship between Tl-Ta and VPD for all species and spacings but with substantial scatter. Slopes for openand closed-spaced shrubs were not significantly different for any species. As container moisture and predawn leaf water potential declined during a dry-down cycle Tl-Ta increased significantly over well-watered levels for open-spaced plants and closed-spaced dogwood. In a field experiment Tl-Ta and VPD were monitored in young London plane, flowering pear, and redbud with-and-without irrigation. Only irrigated London plane Tl-Ta was inversely related to VPD. Leaves coated with petroleum jelly, however, had Tl-Ta levels consistently greater than uncoated leaves in all species, and non-irrigated Tl-Ta rose to those levels during a mid-summer drought. These results suggest that irrigation of container shrubs can be timed to increases in Tl-Ta with VPD, while comparing coated and non-coated Tl-Ta may be more successful for irrigated field production.

Free access

Jin Wook Lee, Kenneth W. Mudge, and Joseph Lardner

American ginseng (Panax quinquefolium L.) contains pharmacologically active secondary compounds known as ginsenosides, which have been shown to be affected by both genetic and environmental factors. In this greenhouse experiment, we tested the hypothesis that ginsenosides would behave as “stress metabolites” and be associated with osmoregulation in response to drought stress. Two year-old seedlings, grown in 5-inch pots, were well watered for 40 days prior to the initiation of treatments. Plants in the drought stress treatment were watered every 20 days while the controls were watered every 10 days, and the experiment was terminated after 4 and 8 dry down cycles (80 days), respectively. Predawn leaf water potential and relative water content (RWC) of drought-stressed plants during a typical dry down cycle were lower than control plants. The diameter and weight of primary storage roots were decreased in the stressed treatment. The length of the main storage root and the longest secondary (fibrous) root were significantly increased by the drought stress treatment. Leaf chlorophyll content of drought-stressed plants was lower than controls. The osmotic potential of the drought-stressed ginseng was not lower than the control, indicating that ginsenoside is not involved in osmoregulation in response to drought stress. Furthermore, ginsenosides Rb1 and Rd, and total ginsenosides were significantly lower in primary roots of drought-stressed plants compared to control plants.

Free access

Hiroshi Yakushiji, Kunihisa Morinaga, and Hiroshi Nonami

Mechanisms of sugar accumulation in response to drought stress in Satsuma mandarin (Citrus unshiu Marc.) fruit were investigated. Predawn leaf water potentials averaged -0.35MPa for well-watered, -0.60 MPa for moderately drought-stressed, and -1.00 MPa for severely drought-stressed glasshouse-grown 3-year-old trees. Fruit peel turgor and fruit growth of the moderately drought-stressed trees recovered to a similar value to that of the well-watered trees. Photosynthetic rates and stomatal conductance of both moderately and severely drought-stressed trees were significantly lower than those of the well-watered plants. However, the total sugar content per fruit of moderately drought-stressed trees was the highest among the drought treatments. A 13C-labeling experiment showed that 13C distribution in fruit grown under the moderately drought-stressed condition was the highest. These findings indicate that sugar accumulation in fruit was caused by an increase in translocation of photosynthates into fruit, especially into the juice sacs, under drought stress.

Free access

John M. Nelson, David A. Palzkill, and Paul G. Bartels

Flower bud injury resulting from freezing temperatures has been a major problem in jojoba [Simmondsia chinensis (Link) C. Schneid.] production. A 3-year field study, which began with 4-year-old plants, evaluated the effect of three irrigation treatments on growth, flower bud survival, seed yield, seed weight, and seed wax concentration of six clones. After 3 years, irrigation cut-off dates of late May (dry treatment) and early September (medium treatment) resulted in reduced plant height and width compared to irrigating through November (wet treatment). Flower bud survival and seed yields were very low in the first year for all treatments. In the second and third years, bud survival for most clones, even at -8C, was greatly improved by withholding water in the fall. In December of the second and third years, plants in the medium and dry plots had lower leaf water potential than those in the wet plot. In the second year, plants in the medium and dry plots had seed yields that were 3.5 times higher and wax yields that were were 2.3 times higher than plants in the wet plot. In the third year, the medium treatment had the highest seed and wax yields. Average seed weight and seed wax concentration were generally highest for plants in the wet plot where seed yields were low. Withholding irrigation from jojoba in the fall appears to improve flower bud survival and seed and wax yields following cold winters.

Free access

Horst W. Caspari, M. Hossein Behboudian, and David J. Chalmers

Five-year old `Hosui' Asian pear (Pyrus serotina Rehder) trees growing in drainage lysimeters and trained onto a Tatura trellis were subjected to three different irrigation regimes. Weekly water use (WU) was calculated using the mass-balance approach. Soil-water content of control lysimeters was kept at pot capacity, while deficit irrigation was applied before [regulated deficit irrigation (RDI)] and during the period of rapid fruit growth [late deficit irrigation (LDI)]. Soil-water content was maintained at ≈50% and 75% of pot capacity for RDI and LDI, respectively. Deficit irrigation reduced mean WU during RDI and LDI by 20%. The reduced WU was caused by lower stomatal conductance (gs) on deficit-irrigated trees. RDI trees had more-negative diurnal leaf water potentials (ψl). The ψl, gs, and WU remained lower for 2 weeks after RDI was discontinued. RDI reduced shoot extension and summer pruning weights, whereas winter pruning weights were not different between treatments. Except for the final week of RDI, fruit growth was not reduced, and fruit from RDI grew faster than the control during the first week after RDI. In contrast, fruit volume measurements showed that fruit growth was clearly inhibited by LDI. Final fruit size and yield, however, were not different between treatments. Return bloom was reduced by RDI but was not affected by LDI.

Free access

Roger Kjelgren and Mike Foutch

Growth and water relations of seedlings grown in protective tree shelters were investigated during establishment in a field nursery. Shelters, 1.2 m high, were placed over 0.5 m Kentucky coffee tree seedlings following spring transplanting in a field experiment. Predawn leaf water potential (ψ) and stomatal conductance (gs) were monitored periodically through the season and growth was measured in late summer. In a second experiment diurnal microclimate, and seedling water relations and use, in the shelters were studied under controlled conditions. In the shelters, leaf and air temperature, humidity, and gs exceeded non-sheltered levels while solar radiation was 70% lower. Despite greater gs, normalized water use was 40% lower in the sheltered trees. While midday gs was similarly high in the field-grown trees, no differences in predawn ψ were detected through the season. Sheltered trees in the field had four times more shoot growth but 40% less caliper growth. Sheltered trees had leaf thickness lower than control trees, and together with the growth and radiation pattern, indicated that they were shade acclimated. Shelters can improve height growth and reduce water loss during establishment, but may not allow sufficient trunk development or taper for upright support

Free access

R. Thomas Fernandez, Ronald L. Perry, and James A. Flore

`Imperial Gala' apple trees (Malus ×domestica Borkh.) on M.9 EMLA, MM.111, and Mark rootstocks were subjected to two drought-stress and recovery periods in a rainshelter. Water relations, gas-exchange parameters per unit leaf area and per tree, chlorophyll fluorescence, and leaf abscisic acid content were determined during each stress and recovery period. Whole-plant calculated gas exchange best indicated plant response to drought stress, with consistent reductions in CO2 assimilation, transpiration, and leaf conductance. Variable and maximal chlorophyll fluorescence and fluorescence quenching were not as sensitive to stress. Other fluorescence parameters showed little difference. The most consistent decreases due to stress for gas exchange per square meter were in transpiration and leaf conductance, with few differences in CO2 assimilation and fewer for mesophyll conductance, internal CO2 concentration, and water-use efficiency. Leaf water potential was consistently lower during drought stress and returned to control values upon irrigation. Leaf abscisic acid content was higher for drought-stressed trees on M.9 EMLA than control trees during the stress periods but inconsistently different for the other rootstock treatments. Trees on M.9 EMLA were least affected by drought stress, MM.111 was intermediate, and Mark was the most sensitive; these results are consistent with the growth data.

Free access

Agnes A. Flores-Nimedez, Paul H. Li, and Charles C. Shin

GLK-8903, an experimental product whose main ingredient is produced by hydrogenation of a primary alcohol extracted from plants, showed significant potential in protecting bean (Phaseolus vulgaris L.) plants from chilling injury. The GLK-8903 protection mechanism was assessed by examining several physiological and biochemical responses. The decline in leaf water potential and the increase in osmotic potential caused by chilling exposure to 4C (day/night) were minimized by the application of GLK-8903. Chilling causes an increase in electrolyte leakage, an indication of chilling injury of the plasma membrane. Increased electrolyte leakage was reduced significantly in the GLK-8903-treated plants during chilling. This minimized leakage may be due to less damage of the plasma membrane. Plasmolysis and deplasmolysis studies of the epidermal cells suggest that GLK-8903 is able to reduce the plasma membrane perturbation in the chilling environment, as evident by: 1) the lower permeability coefficient to urea at 4C, and 2) the swelling of protoplasts in the cells of untreated tissues after chilling exposure with no swelling of the protoplast being observed in the GLK-8903-treated cells. Malondialdehyde (MDA), a product of lipid peroxidation, increased more in untreated controls than in treated plants exposed to 4C. Plasma membrane ATPase activity decreased less in GLK-8903-treated plants than in untreated controls after 3 days at 4C. The mechanism of GLK-8903-alleviated chilling injury is discussed.

Free access

J.G. Norcini, P.C. Andersen, and G.W. Knox

Leaf physiology and plant growth of Photinia x fraseri Dress were assessed when grown under full sunlight or (100% sun) or polypropylene shadecloth with a light transmittance of 69%, 47%, or 29% sun. Plants in 69% or 47% sun usually had the highest midday net CO2 assimilation rates (A). Net CO, assimilation rate was most dependent on photosynthetic photon flex (PPF R2 = 0.60), whereas stomata] conductance to water vapor was primarily influenced by vapor pressure deficit (R2 = 0.69). Stomatal conductance was often inversely related to sun level, and intercellular CO2 concentration was often elevated under 29% sun. Midday relative leaf water content and leaf water potential were unaffected by light regime. Light-saturated A was achieved at ≈ 1550 and 1150 μmol·m-2·s-1 for 100% and 29% sun-grown plants, respectively. Under 29% sun, plants had a lower light compensation point and a higher A at PPF < 1100 μmol·m-2·s-1. Total growth was best under 100% sun in terms of growth index (GI) increase, total leaf area, number of leaves, and dry weight (total, stem, leaf, and root), although plants from all treatments had the same GI increase by the end of the experiment. Plants in all treatments had acceptable growth habit (upright and well branched); however, plants grown in 29% sun were too sparsley foliated to be considered marketable. There were no differences in growth among the four treatments 7 months after the Photinia were transplanted to the field.

Free access

David Goldhamer, Mario Viveros, and Ken Shackel

Previously well irrigated mature `Nonpareil' almond trees (Prunus dulcis) were subjected to varying periods of water deprivation prior to harvest and then to either full or no postharvest irrigation. Eight preharvest water deprivation (PWD) lengths ranging from 14 to 63 days were evaluated on a sandy loam soil with a rooting depth of about 1.5 m.

Development of tree water deficits occurred rapidly following PWD. Predawn leaf water potential decreased to about -1.8 and -3.1 MPa after 10 and 20 days, respectively. Defoliation began about 30 days after PWD and trees subjected to more than 50 days completely defoliated. The rate of hull split was directly related to the PWD duration. With early cutoffs, the size of the hull split-arrested nuts at harvest was large compared with the same nut type in later cutoffs suggesting that as nuts develop, large nuts are preferential sinks for assimilates. Kernel size was only mildly reduced by PWD during the first study year. There was a trend toward lower total kernel yield with longer PWD as a result of smaller kernel girth but yield differences were not significant. The number of nuts remaining in the tree after shaking was not related to PWD. Bark strength increased after PWD with 10 to 14 days required to prevent shaker damage. Postharvest irrigation resulted in late season defoliation but no rebloom. Bloom density reductions in 1990 were related more to the lack of 1989 postharvest irrigation than to early PWD.