Search Results

You are looking at 131 - 140 of 342 items for :

  • "leaf water potential" x
  • Refine by Access: All x
Clear All
Free access

Agnes A. Flores-Nimedez, Paul H. Li, and Charles C. Shin

Protection mechanism of a new compound, coded as GLK-8903, from chilling injury in bean plants was assessed by measuring several physiological parameters. The decline in leaf water potential caused by the chilling exposure to 4°C (day/night) was minimized when GLK-8903 was applied to the plants as compared to the non-treated control. Chilling causes an increase in electrolyte leakage, an indication of chilling injury that occurs at the site of plasma membrane. An increased electrolyte leakage was reduced in the GLK-8903-treated plants during chilling. Data from plasmolysis and deplasmolysis studies of epidermal cells suggest that GLK-8903 is able to stabilize the plasma membrane under stress condition by determining the permeability coefficients plasmometrically (1.96 cm s-1 × 10-4 for GLK-8903-treated plants vs. 4.00 for the controls 3 d at 4°C) with less decreased activity of the plasma membrane ATPase (9.36 μmol ATP.mg chl-1·h-1 for GLK-8903-treated plants vs. 5.04 for the controls 3 d at 4°C). GLK-8903 appears to have high application potential in protecting bean plants from chilling injury with improved yield.

Free access

Todd C. Einhorn, Horst W. Caspari, and Steve Green

Approach-grafted 1-year-old `Gala'/M7 apple trees were grown with both tops for the remainder of the 2003 season in a greenhouse. Trees were supplied with >100% (control, PRD100) or 50% (PRD50, DI50) of daily ETc either applied to one root compartment only (PRD100, PRD50) or divided evenly across both root compartments (control and DI50). ETc was estimated from gravimetric measurements, and irrigation was switched between wet and dry root compartments several times throughout the experiment. Soil moisture was measured both gravimetrically (tripod) and volumetrically (time-domain reflectometry). Predawn leaf water potential (υpd) and single leaf gas exchange (photosynthesis, stomatal conductance, and transpiration) were recorded daily, and sap flow in stems and roots was monitored continuously using the heat-pulse technique. Leaves were collected for abscisic acid (ABA) determination following gas exchange measurements. Regardless of irrigation placement (i.e., PRD or DI), both 50% ETc treatments experienced similar declines in υpd and single leaf gas exchange relative to control levels. In addition, ABA concentrations were similar for PRD50 and DI50, and were significantly higher than the control and PRD100 treatments. PRD100 trees had similar υpd as control trees; however, gas exchange was reduced >25% compared to the control. Bulk leaf ABA concentration did not differ significantly from control levels and does not by itself explain the down regulation of stomata with PRD100.

Free access

Robert M. Augé, Xiangrong Duan, Jennifer L. Croker, Craig D. Green, and Will T. Witte

We compared the potential for foliar dehydration tolerance and maximum capacity for osmotic adjustment in twelve temperate, deciduous tree species, under standardized soil and atmospheric conditions. Dehydration tolerance was operationally defined as lethal leaf water potential (Ψ): the Ψ of the last remaining leaves surviving a continuous, lethal soil drying episode. Nyssa sylvatica and Liriodendron tulipifera were most sensitive to dehydration, having lethal leaf Ψ of –2.04 and –2.38 MPa, respectively. Chionanthus virginiana, Quercus prinus, Acer saccharum, and Quercus acutissima withstood the most dehydration, with leaves not dying until leaf psi dropped to –5.63 MPa or below. Lethal leaf Ψ (in MPa) of other, intermediate species were: Quercus rubra (–3.34), Oxydendrum arboreum (–3.98), Halesia carolina (–4.11), Acer rubrum (–4.43), Quercus alba (–4.60), and Cornus florida (–4.88). Decreasing lethal leaf Ψ was significantly correlated with increasing capacity for osmotic adjustment. Chionanthus virginiana and Q. acutissima showed the most osmotic adjustment during the lethal soil drying episode, with osmotic potential at full turgor declining by 1.73 and 1.44 MPa, respectively. Other species having declines in osmotic potential at full turgor exceeding 0.50 MPa were Q. prinus (0.89), A. saccharum (0.71), Q. alba (0.68), H. carolina (0.67), Q. rubra (0.60), and C. florida (0.52). Lethal leaf Ψ was loosely correlated with lethal soil water contents and not correlated with lethal leaf relative water content.

Free access

Jyotsna Sharma, Steve Pallardy, and Denny Schrock

Perennial wildflowers, once established, are a low-maintenance alternative in a flowerbed. However, water stress and poor root development in field soil can be detrimental to young plants at the time of transplanting. A fully expanded hydrogel, HydroSource, was incorporated to replace 0% (control), 7.5%, 15% (recommended rate), and 30% of the volume of a clayey field soil to determine its effect on plant water status. Addition of hydrogel reduced water stress in Asclepias incarnata and Gaillardia grandiflora plants. Plants growing in hydrogel amended soil had: 1) significantly lower stomatal resistance (P < 0.01); and 2) significantly higher leaf water potential (P < 0.01). Gaillardia grandiflora control plants showed considerable wilting (reflected in high stomatal resistance and low water potential readings) on the 3rd day of the drought period while those with 15% and 30% hydrogel were turgid even on the 5th day. Hydrogel-amended soil appeared less compacted, and root growth in Asclepias incarnata increased with the increasing rate of hydrogel added to the soil.

Free access

Maria G. Janssen and Albert H. Markhart III

Tepary beans (Phaseolus acutifolius Gray) are more drought tolerant and have stomata that are more sensitive to low leaf water potentials (ψ w) than common beans (P. vulgaris L.). This study was designed to examine the role of ABA in controlling stomatal behaviour in these species. Comparison of the bulk leaf ABA content does not explain why tepary stomata are more sensitive to low leaf ψ w compared to common bean (at -1.4 MPa ABA content increased 40-fold in common bean and 25-fold in tepary). We hypothesize that the greater sensitivity of tepary stomata to low leaf ψ w is related to a higher concentration of ABA in the xylem sap, and/or to a greater sensitivity of tepary stomata to ABA. Xylem sap of well-watered and water stressed plants is analyzed to determine the concentration of ABA, and whether ABA is a putative candidate serving as a chemical root signal in response to water stress in Phaseolus. To test stomatal sensitivity to ABA, epidermal strips and detached leaves are exposed to a range of ABA concentrations. The relationship between stomatal aperture and different ABA concentrations is discussed.

Free access

R. Thomas Fernandez, Ronald L. Perry, and James A. Flore

`Imperial Gala' apple trees (Malus ×domestica Borkh.) on M.9 EMLA, MM.111, and Mark rootstocks were subjected to two drought-stress and recovery periods in a rainshelter. Water relations, gas-exchange parameters per unit leaf area and per tree, chlorophyll fluorescence, and leaf abscisic acid content were determined during each stress and recovery period. Whole-plant calculated gas exchange best indicated plant response to drought stress, with consistent reductions in CO2 assimilation, transpiration, and leaf conductance. Variable and maximal chlorophyll fluorescence and fluorescence quenching were not as sensitive to stress. Other fluorescence parameters showed little difference. The most consistent decreases due to stress for gas exchange per square meter were in transpiration and leaf conductance, with few differences in CO2 assimilation and fewer for mesophyll conductance, internal CO2 concentration, and water-use efficiency. Leaf water potential was consistently lower during drought stress and returned to control values upon irrigation. Leaf abscisic acid content was higher for drought-stressed trees on M.9 EMLA than control trees during the stress periods but inconsistently different for the other rootstock treatments. Trees on M.9 EMLA were least affected by drought stress, MM.111 was intermediate, and Mark was the most sensitive; these results are consistent with the growth data.

Free access

Kuo-Tan Li, Jackie Burns, Luis Pozo, and Jim Syvertsen

To determine the effects of abscission compounds 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) and ethephon on citrus leaf function and water relations, we applied CMNP at 0, 200, 500, 1000, or 2000 ppm, or ethephon at 400 or 800 ppm, to canopies of fruiting potted and field citrus trees during the harvest season. Both compounds induced fruit and leaf drop after 3 days of application, especially at high concentrations. Low concentrations of CMNP (0, 200, or 500 ppm) or either ethephon treatments did not affect leaf photosystem II efficiency, as indicated by leaf chlorophyll fluorescence (Fv/Fm). High concentrations of CMNP (1000 or 2000 ppm) immediately reduced photosystem II efficiency in leaves and fruit peel. However, Fv/Fm of leaves remaining on the trees was gradually restored and close to the level of control after 4 days of treatment. Both compounds had little effect on chlorophyll content, ratio of chlorophyll a to chlorophyll b, leaf water content, and mid-day leaf water potential. The results suggest that CMNP at recommended concentrations (200 to 500 ppm) effectively reduced fruit attachment force with little herbicidal effect on leaves.

Free access

Y.L. Qian and J.D. Fry

Textbook recommendations suggest that turf should be watered deeply and infrequently to encourage drought resistance. Data supporting this recommendation are lacking, however. Studies were done to determine the influence of irrigation frequency on `Meyer' zoysiagrass (Zoysia japonica Steud.) rooting and drought resistance. Turf was established on a silt loam soil in 27-cm-diameter by 92-cm-deep containers in the greenhouse. Irrigation was performed daily or at the onset of wilt with a water volume equal to daily or cumulative evapotranspiration of well-watered turf in small weighing lysimeters. After 90 days of irrigation treatments, a dry-down was imposed during which no additional water was applied for >50 days. Compared to turf irrigated daily, turf watered at the onset of wilt exhibited: i) lower (more-negative) leaf water and osmotic potentials prior to the onset of drought; ii) higher leaf water potential and better turf quality at the end of dry-down; and iii) deeper rooting as indicated by lower soil moisture content at 50- and 70-cm depths at the end of dry down.

Free access

Said Ennahli and Sorkel Kadir

Partial root-zone drying (PRD) irrigation management has been developed for grapevines as an efficient method to control excessive growth, improve fruit quality, and save water without compromising yield. PRD is based on knowledge of the mechanisms that control transpiration and requires slow dehydration of half of the plant root system, whereas the other half is irrigated. A study was conducted in the field to evaluate the effect of PRD on physiological characteristics, growth, yield, and fruit quality of three grape cultivars. The wetting and drying cycle of the PRD-vine root system is alternated on a 10–14 day schedule. Significant reduction in vigor was observed in treated plants compared with control plants. Root biomass was not affected, but fine roots significantly increased in PRD-treated plants, compared with that of the control. This contributed to the ability of PRD-treated plants to maintain leaf water potential similar to that of the control. Stomatal conductance of PRD plants was significantly reduced when compared with that of the control plants. Abscisic acid (ABA) concentration in leaves of PRD vines increased significantly when compared to the control vines. PRD treatment significantly increased yield and fruit quality when compared with the control treatment. PRD significantly increased water use efficiency (pruning weight per unit of water applied). This study shows that PRD stimulated ABA production in the drying roots, which caused reduction in stomatal conductance and transpiration rate, leading to a substantial reduction in vegetative growth without compromising yield and fruit quality.

Free access

Jin Wook Lee, Kenneth W. Mudge, and Joseph Lardner

American ginseng (Panax quinquefolium L.) contains pharmacologically active secondary compounds known as ginsenosides, which have been shown to be affected by both genetic and environmental factors. In this greenhouse experiment, we tested the hypothesis that ginsenosides would behave as “stress metabolites” and be associated with osmoregulation in response to drought stress. Two year-old seedlings, grown in 5-inch pots, were well watered for 40 days prior to the initiation of treatments. Plants in the drought stress treatment were watered every 20 days while the controls were watered every 10 days, and the experiment was terminated after 4 and 8 dry down cycles (80 days), respectively. Predawn leaf water potential and relative water content (RWC) of drought-stressed plants during a typical dry down cycle were lower than control plants. The diameter and weight of primary storage roots were decreased in the stressed treatment. The length of the main storage root and the longest secondary (fibrous) root were significantly increased by the drought stress treatment. Leaf chlorophyll content of drought-stressed plants was lower than controls. The osmotic potential of the drought-stressed ginseng was not lower than the control, indicating that ginsenoside is not involved in osmoregulation in response to drought stress. Furthermore, ginsenosides Rb1 and Rd, and total ginsenosides were significantly lower in primary roots of drought-stressed plants compared to control plants.