Search Results

You are looking at 121 - 130 of 339 items for :

  • "leaf water potential" x
  • Refine by Access: All x
Clear All
Free access

Riccardo Gucci, Leonardo Lombardini, and Massimiliano Tattini

Water relation parameters were calculated from analysis of 92 pressure-volume isotherms of leaves of two olive varieties, `Leccino' and `Frantoio', measured after 4 weeks of salinity stress and 4 weeks of subsequent relief either in hydroponics or soil culture. `Frantoio' was more salt-tolerant than `Leccino', but no major differences in water relation parameters emerged between the two varieties. Increasing salinity from 0 to 200 mM NaCl decreased predawn leaf water potential from –0.5 MPa to –1.3 MPa, relative water content (RWC) from 97.6% to 89%, and leaf osmotic potential (Ψπ) from –2.0 to –3.5 MPa. Relative water content at turgor loss point (RWCtlp) was decreased from 89% to 85% (soil culture) and from 86% to 80% (hydroponic culture) in 0 to 200 mM CaCl-treated plants, respectively; a lower RWCtlp was also retained during the relief from salinity. Active osmotic adjustments induced by salinity was the result of accumulation of both inorganic ions and compatible solutes (e.g., mannitol). Maintenance of lower Ψπ and RWCtlp during relief indicated that salinized plants were better adapted to withstand further stress and that this potential might be exploited to harden olive plants to be used in arid or saline environments.

Free access

Roger Kjelgren

Growth and water relations of Kentucky coffee tree [Gymnocladus dioica (L.) K. Koch] whips in translucent tubelike shelters were investigated. In a container study, 1.2-m-high shelters were placed over whips following transplanting, then diurnal microclimate, water relations, and water use were measured. Shelter air temperature and vapor pressure were substantially higher, and solar radiation was 70% lower, than ambient conditions. Sheltered trees responded with nearly three-times higher stomatrd conductance than nonsheltered trees. However, due to substantially lower boundary layer conductance created by the shelter, normalized water use was 40910 lower. In a second experiment, same-sized shelters were placed on whips following spring transplanting in the field. Predawn and midday leaf water potentials and midday stomatal conductance (g,) were monitored periodically through the season, and growth was measured in late summer. Midday gs was also much higher in field-grown trees with shelters than in those without. Sheltered trees in the field had four times greater terminal shoot elongation but 40% less stem diameter growth. Attenuated radiation in the shelters and lower specific leaf area of sheltered trees indicated shade acclimation. Shelters can improve height and reduce water loss during establishment in a field nursery, but they do not allow for sufficient trunk growth.

Free access

Y.L. Qian and J.D. Fry

Textbook recommendations suggest that turf should be watered deeply and infrequently to encourage drought resistance. Data supporting this recommendation are lacking, however. Studies were done to determine the influence of irrigation frequency on `Meyer' zoysiagrass (Zoysia japonica Steud.) rooting and drought resistance. Turf was established on a silt loam soil in 27-cm-diameter by 92-cm-deep containers in the greenhouse. Irrigation was performed daily or at the onset of wilt with a water volume equal to daily or cumulative evapotranspiration of well-watered turf in small weighing lysimeters. After 90 days of irrigation treatments, a dry-down was imposed during which no additional water was applied for >50 days. Compared to turf irrigated daily, turf watered at the onset of wilt exhibited: i) lower (more-negative) leaf water and osmotic potentials prior to the onset of drought; ii) higher leaf water potential and better turf quality at the end of dry-down; and iii) deeper rooting as indicated by lower soil moisture content at 50- and 70-cm depths at the end of dry down.

Free access

Hui-lian Xu, Laurent Gauthier, and André Gosselin

Tomato plants were grown in peatmoss-based substrate and supplied with nutrient solution of high (4.5 mS·cm–1) or low (2.3 mS·cm–1) electrical conductivity (EC) under high (95%) or low (55% of capillary capacity) substrate water content (SWC) to examine the effects of high EC and low SWC on growth and physiology. Salts were allowed to accumulate in the substrate for 7 weeks. Both high EC and low SWC significantly decreased dry matter production (DMP) and fruit yield (FY). Fruit harvest index was lower in high EC- or low SWC-treated plants. Decrease in marketable FY was attributed to both the decrease in total FY and the increase in small and abnormal (cracked and rot) fruits. Both high EC and low SWC decreased photosynthesis (PN) and leaf water potential (ΨL). However, chlorophyll content and respiration were increased by high EC under both high and low SWC. Water consumption based on both whole plant and unit of leaf area was decreased by high EC and low SWC. ΨL and transpiration were depressed by high EC and low SWC, especially at midday. There was a significant positive correlation between fruit yield and water consumption. The effects of high EC and low SWC were additive on most of the variables. Decreases in ΨL might ultimately account for water consumption reduction, PN depression, and FY decrease.

Free access

Jonathan N. Egilia, Fred T. Davies Jr, and Sharon Duray

Hibiscus plants, were irrigated with full strength Hoagland's nutrient solution containing either 0,2,5, or 10 mM potasium(K). After 72 days of K treatment, half of the plants at each K level were subjected to a 21-day slowly developing drought stress cycle and the other half were non-drought stressed (ND). Mid-day leaf water potentials at day 21 was-1.5 to-1.6 MPa (DS), and -0.5 MPa (ND). Leaf K concentration increased with increasing K in nutrient solution for both DS and ND plants, but K was higher in DS than ND plants at 2.5 and 10 mM K. Of the macronutrient cations, only (Ca) was inversely correlated with nutrient solution K, in both DS and ND plants. Leaf concentrations of all the micronutrient cations increased with increasing K supply, regardless of drought stress. Potassium hadt significant positive correlation with total plant and leaf dry weight of DS, but not ND plants. Leaf stable carbon isotope composition (δ13 C,an estimate of long term water-use efficiency), was positively correlated with N, Mg and Ca, and negatively correlated with K, iron (Fe), and K:total cation ratio regardless of drought stress. Both net photosynthesis and stomatal conductance were negatively correlated with N and Ca, but positively correlated with K, Fe and manganese in ND plants.

Free access

Rolston St. Hilaire and William R. Graves

Traits associated with drought resistance vary with provenance of hard maples (Acer sp.), but the stability of differences ex situ and over time is unknown. We compared growth, dry-matter partitioning, leaf anatomy, and water relations of seedlings from central Iowa, eastern Iowa, and the northeastern United States over 2 years. Some seedlings from each of the three provenances were used as well-irrigated controls. The remaining seedlings were drought-stressed and irrigated based on evapotranspiration. Across irrigation treatments, plants from Iowa had shorter stems and higher specific weight of lamina, root: shoot dry-weight ratios, and root: lamina dry-weight ratios than did plants from the northeastern United States when treatments began. Biomass partitioning did not differ based on provenance after irrigation treatment for 2 years, but leaves from central Iowa had a higher specific weight, and their abaxial surfaces had more stomates and trichomes, than did leaves from the Northeast. Drought stress reduced conductance only in plants from central Iowa. Across provenances, drought stress reduced stomatal frequency, surface area of laminae, and dry weights of laminae and roots, and increased root: shoot dry-weight ratio. Leaf water potential of plants subjected to drought was lower at predawn and higher at midday than that of control plants. Drought did not cause osmotic adjustment in leaves. We conclude that the stability of foliar differences among provenances of hard maples validates using these traits as criteria for selecting ecotypes for use in managed landscapes prone to drought.

Free access

Patricia R. Knight, J. Roger Harris, and Jody K. Fanelli

Root severance during field harvesting alters the water status of a tree, resulting in water stress and reduced post-transplant growth. Two experiments, using Acer rubrum L. (red maple), determined the influence of root severance at harvest on sap flow and xylem embolism. Trees 1.5–1.8 m tall (4 years old) were utilized in the first experiment, and trees 1.2–1.5 m tall (2 years old) were utilized in the second. Sap flow sensors were installed on the 4-year-old trees prior to root severance and remained on the trees until 1 week after harvest. Within 1 day after root severance sap flow was reduced and remained lower than nontransplanted (control) trees for the remainder of the experiment. Leaf stomatal conductance (Cs) of transplanted trees 1 week after root severance was lower than that of control trees, but leaf water potentials (ψ) were similar. In the second experiment, sap flow was reduced relative to control trees within 2 h after root severance. Although Cs was reduced 4 hours after root severance, ψ was not. Embolism increased within 24 hours of root severance. These results indicate that root severance quickly induces increased levels of embolism, which is associated with reduced sap flow.

Free access

Rajeev Arora, S.P. Dharmalingam, and B.C. Bearce

Evidence is accumulating in favor of a linkage at the cellular level between various abiotic stresses. We conducted a study to evaluate the effect of water stress on the heat tolerance of zonal geraniums. Water-stress was imposed as previously described. Leaf water potential (LWP, MPa), relative water content (RWC, percent), and heat-stress tolerance (HST; LT50, defined as temperature causing half maximal percent injury based on electrolyte leakage) were measured in control, stressed, and recovered (watering restored as in controls) plants. Proteins were extracted from the leaves following the treatments. SDS-PAGE and immunoblotting were performed using standard procedures. Immunoblots were probed with antibodies to dehydrin (T. Close) and 70-kDa heat shock cognate (HSC 70 of spinach) proteins (C. Guy). Data indicate that 1) LXWP and RWC in control and stressed plants were –0.378 and –0.804 MPa and 92.31% and 78.69%, respectively; 2) stressed plants exhibited a significant increase in HST compared to control (LT50 of 55°C vs. 51°C), which was associated with the accumulation of several heat-stable, dehydrin proteins (26 to 50 kDa), and of cytosolic and ER luminal (BiP) HSC 70 proteins; 3) in recovered plants, LXWP, RWC, and HST reversed back to the levels of control concomitant with the disappearance or reduction of dehydrins and HSC 70 proteins. These results suggest that specific stress proteins may play a role in development of heat stress tolerance.

Free access

Robert M. Augé, Xiangrong Duan, Jennifer L. Croker, Craig D. Green, and Will T. Witte

We compared the potential for foliar dehydration tolerance and maximum capacity for osmotic adjustment in twelve temperate, deciduous tree species, under standardized soil and atmospheric conditions. Dehydration tolerance was operationally defined as lethal leaf water potential (Ψ): the Ψ of the last remaining leaves surviving a continuous, lethal soil drying episode. Nyssa sylvatica and Liriodendron tulipifera were most sensitive to dehydration, having lethal leaf Ψ of –2.04 and –2.38 MPa, respectively. Chionanthus virginiana, Quercus prinus, Acer saccharum, and Quercus acutissima withstood the most dehydration, with leaves not dying until leaf psi dropped to –5.63 MPa or below. Lethal leaf Ψ (in MPa) of other, intermediate species were: Quercus rubra (–3.34), Oxydendrum arboreum (–3.98), Halesia carolina (–4.11), Acer rubrum (–4.43), Quercus alba (–4.60), and Cornus florida (–4.88). Decreasing lethal leaf Ψ was significantly correlated with increasing capacity for osmotic adjustment. Chionanthus virginiana and Q. acutissima showed the most osmotic adjustment during the lethal soil drying episode, with osmotic potential at full turgor declining by 1.73 and 1.44 MPa, respectively. Other species having declines in osmotic potential at full turgor exceeding 0.50 MPa were Q. prinus (0.89), A. saccharum (0.71), Q. alba (0.68), H. carolina (0.67), Q. rubra (0.60), and C. florida (0.52). Lethal leaf Ψ was loosely correlated with lethal soil water contents and not correlated with lethal leaf relative water content.

Free access

Jyotsna Sharma, Steve Pallardy, and Denny Schrock

Perennial wildflowers, once established, are a low-maintenance alternative in a flowerbed. However, water stress and poor root development in field soil can be detrimental to young plants at the time of transplanting. A fully expanded hydrogel, HydroSource, was incorporated to replace 0% (control), 7.5%, 15% (recommended rate), and 30% of the volume of a clayey field soil to determine its effect on plant water status. Addition of hydrogel reduced water stress in Asclepias incarnata and Gaillardia grandiflora plants. Plants growing in hydrogel amended soil had: 1) significantly lower stomatal resistance (P < 0.01); and 2) significantly higher leaf water potential (P < 0.01). Gaillardia grandiflora control plants showed considerable wilting (reflected in high stomatal resistance and low water potential readings) on the 3rd day of the drought period while those with 15% and 30% hydrogel were turgid even on the 5th day. Hydrogel-amended soil appeared less compacted, and root growth in Asclepias incarnata increased with the increasing rate of hydrogel added to the soil.