Search Results

You are looking at 121 - 130 of 383 items for :

  • "Cynodon dactylon" x
  • Refine by Access: All x
Clear All
Free access

Xiaoyan Dai, Donald M. Vietor, Frank M. Hons, Tony L. Provin, Richard H. White, Thomas W. Boutton, and Clyde L. Munster

Large, volume-based applications of composted municipal biosolids (CMB) can enhance turfgrass growth and quality and soil physical and chemical properties. In addition, CMB additions could affect short-term dynamics of soil organic carbon (SOC) and enhance C sequestration and environmental quality compared with turfgrass fertilized with inorganic nutrients in mineral soil. The objective was to compare changes in SOC among contrasting sources of Tifway bermudagrass sod (Cynodon dactylon L. Pers. × C. transvaalensis Burtt-Davey) after transplanting. Three sod sources from fields grown with two commercial sources of CMB or inorganic phosphorus fertilizer were transplanted on silica sand in replicated box lysimeters. Storage of SOC within 0 to 5-cm and 5 to 50-cm depths was greater in CMB than fertilizer-grown sod during 10 months of establishment and maintenance. Leaching losses of dissolved organic C (DOC) were two times greater for CMB than for fertilizer-grown sod over seven simulated rain events, but the ratio of DOC in leachate to total SOC mass was 0.3% or less for CMB-grown sod. An increase in δ13C values of SOC over sampling dates indicated the proportion of SOC derived from turfgrass increased, whereas that from CMB decreased. The benefit of greater rates of SOC storage during establishment and maintenance of CMB compared with fertilizer-grown sod was achieved without substantive loss of DOC in leachate.

Full access

Marco Fontanelli, Michel Pirchio, Christian Frasconi, Luisa Martelloni, Michele Raffaelli, Andrea Peruzzi, Nicola Grossi, Lisa Caturegli, Simone Magni, Monica Gaetani, and Marco Volterrani

Turfgrass species can be classified into two main groups: cool-season and warm-season species. Warm-season species are more suited to a Mediterranean climate. Transplanting is a possible method to convert a cool-season to a warm-season turfgrass in untilled soil. It generally requires the chemical desiccation of the cool-season turfgrass. However, alternative physical methods, like flaming and steaming, are also available. This paper compares flaming, steaming, and herbicide application to desiccate cool-season turfgrass, for conversion to hybrid bermudagrass (Cynodon dactylon x C. transvaalensis) in untilled soil, using transplanting. Two prototype machines were used, a self-propelled steaming machine and a tractor-mounted liquefied petroleum gas flaming machine. Treatments compared in this work were two flaming treatments and two steaming treatments performed at four different doses together with two chemical treatments with glufosinate-ammonium herbicide applications. The cool-season turfgrass species were tall fescue (Festuca arundinacea) and perennial ryegrass (Lolium perenne). The desiccation effect of the various treatments on cool-season turf was assessed by photographic survey 15 days after treatment. The percentage cover of hybrid bermudagrass was visually assessed at 43 weeks after planting. Steaming and flaming effects on both parameters were described by logistic curves. The highest doses of steaming and flaming almost completely desiccated cool-season turf, and similar hybrid bermudagrass cover was established by both the methods as the chemical application (50% to 60%). Thus both flaming and steaming may be considered as valid alternatives to herbicides aimed at turf conversion.

Free access

Lambert B. McCarty, Leon T. Lucas, and Joseph M. DiPaola

Spring dead spot (SDS) [Gaeumannomyces graminis (Sacc.) von Arx & D. Olivier var. graminis Walker] is a serious disease of bermudagrass [Cynodon dactylon (L.) Pers.] throughout much of the southern United States and is believed to be at least partially influenced by the previous year's turfgrass management practices. Research was performed to: a) determine the efficacy of selected fungicide control measures; and b) determine the influence of N and K nutrient regimes on the expression of SDS symptoms in Tifway bermudagrass (C. dactylon x C. transvaalensis Burtt-Davy). Averaged over two sites in 2 years, a 72% reduction in SDS followed a fall application of benomyl at 12 kg·ha. Fenarimol applied at three rates (1.5, 2.3, and 3.0 kg·ha) on three fall dates reduced SDS by a combined average of 66%. A single application of propiconazole (2.5 kg·ha) reduced disease by an average of 56%. Application of N (98 kg·ha) in late fall increased SDS 128% in one test location. Application of potassium sulfate (269 kg K/ha) in late fall resulted in an average increase in SDS expression of 89% the following spring over all experiments. Turf managers with severe SDS should minimize heavy late-fall K applications and possibly use benomyl, fenarimol, or propiconazole for disease suppression. Chemical names used: α -(2-chlorophenyl)α -(4-chlorophenyl)-S-pyrimidinemethanol (fenarimol); [methyl 1(butylcarbamoyl)-2-benzimidazolecarbamate] (benomyl); 1-[[2-(2,4-dichlorophenyl)-4propyl-1,3-dioxolan-2-yl]methyl]--1H-1,2,4-triazole (propiconazole).

Free access

John Wells, Jiyu Yan, Melissa Riley, Suresh Samala, and Vance Baird

Bermudagrass (Cynodon dactylon) cultivars may exhibit increased tolerance to cold following periods of exposure to moderately cold temperature (i.e., acclimation). We are evaluating biochemical changes and the regulation of gene expression in two cultivars—'Midiron' and U-3—during this acclimation period. Total membrane lipid fatty acids per unit of total lipids (MLFA/TL; μg·mg–1) increased in crowns over the 4-week exposure to chilling temperatures (8C day/2C night). Of the fatty acids comprising 95% of total MFLA, concentrations of short-chain and saturated FAs declined significantly while unsaturated longer-chain FA concentration increased. As a result, the double bond index (percent of each FA x number of double bonds in the FA) increased during the period of low temperature exposure, indicative of increasing membrane fluidity. Changes in MFLA were evident as early as 4 days following exposure to chilling temperatures. Identification of mRNA species expressed in response to low temperature utilized differential display-PCR. Initial screening with paired T11N1N 2 3'-anchor and 5'-random decamer primers has identified transcripts differentially expressed as early as 23 h post-exposure and was maintained for at least an additional 36 h. Isolation, reamplification, and cloning of these identified PCR products is in progress.

Free access

Qi Zhang and Kevin Rue

Saline and alkaline conditions often coexist in nature. Unlike salinity that causes osmotic and ionic stresses, alkalinity reflects the impact of high pH on plant growth and development. In this research, seven turfgrass species, tall fescue (Festuca arundinacea Schreb.), kentucky bluegrass (Poa pratensis L.), creeping bentgrass (Agrostis stolonifera L.), perennial ryegrass (Lolium perenne L.), zoysiagrass (Zoysia japonica Steud.), bermudagrass [Cynodon dactylon var. dactylon (L.) Pers.], and alkaligrass [Puccinellia distans (Jacq.) Parl.], were germinated under 10 saline–alkaline conditions [two salinity concentrations (25 and 50 mm) × five alkalinity levels (pH = 7.2, 8.4, 9.1, 10.0, 10.8)] in a controlled environment. Seed germination was evaluated based on final germination percentage and daily germination rate. Alkaligrass and kentucky bluegrass showed the highest and lowest germination under saline conditions, respectively. Limited variations in germination were observed in other species, except bermudagrass, which showed a low germination rate at 50 mm salinity. Alkalinity did not cause a significant effect on seed germination of tested turfgrass species.

Free access

A. Shiferaw, M.W. Smith, R.D. Eikenbary, and Don C. Arnold

Perennial legumes ground covers were evaluated in pecan (Carya illinoinensis) orchards to supply nitrogen and increase beneficial arthropods. Ground covers were `Kenland' red clover (Trifolium pratense), `Louisiana S-1' white clover (Trifolium repens), a mixture of these two legumes, or bermuda grass (Cynodon dactylon), each in 5 ha plots. Nitrogen was applied at 0-200 kg·ha-1 N in 50 kg intervals to bermuda grass plots, and was omitted on the legumes. Aphids feeding on the legumes attracted lady beetles; however, lady beetle populations in the tree canopies were not affected by ground cover treatment. The most abundant lady beetle species in legumes were Coleomegilla maculata lengi (77%) and Coccinella septempunctata (13%); whereas, dominant species in tree canopies were Coleomegilla maculata lengi (33%). Olla v-nigrum (20%). Cycloneda munda (18%) and Coccinella septempunctata (15%). Several other beneficial arthropods were sampled in legumes and tree canopies. Aphid populations feeding on pecans were low (peak population ≈ 2 aphids/leaf), and not affected by ground cover treatment. Legumes supplied the equivalent of applying 68-156 kg·ha-1 N.

Free access

G.C. Munshaw, X. Zhang, and E.H. Ervin

Bermudagrass [Cynodon dactylon (L.) Pers.] is widely used along its northern limit of adaptation. However, cold hardiness and winter survival are common concerns facing turfgrass managers in these areas. The objective of this study was to determine the effects of moderate salinity applications on bermudagrass cold hardiness. Two trials were conducted in Summer 2002. The cultivar Princess was seeded into pots in a glasshouse at a rate of 24 kg·ha-1. Pots received a weekly solution of 20-20-20 at a rate of 4.9 kg·ha-1 N. Bi-weekly salinity treatments began ≈2 months after germination and consisted of 0, 5, 20, and 40 dS·m-1 in the form of NaCl. These treatments continued for ≈8 weeks. Weekly quality ratings and chlorophyll fluorescence measurements showed similar results, with the high salinity treatments having the poorest quality. Soil electrical conductivity measurements showed a significant increase for the high salinity rates over the lower rates at the end of the trials. Proline concentrations increased with increasing salinity treatments in Trial 1 and were highest with the 20 dS·m-1 rate in Trial 2. Plants were acclimated in a growth chamber, and artificial freezing tests revealed that the 5 and 20 dS·m-1 treatments had the highest percentage of regrowth after freezing. These results indicate that moderate applications of salt or the use of effluent water prior to hardening may be an important way to increase bermudagrass cold hardiness.

Free access

Patrick E. McCullough, Haibo Liu, Lambert B. McCarty, and Joe E. Toler

Dwarf-type bermudagrass (Cynodon dactylon Pers. × C. transvaalensis Burtt-Davy) putting greens tolerate long-term mowing heights of 3.2 mm but require heavy nitrogen (N) fertilizations that increase ball roll resistance. Applying a plant growth regulator, such as trinexapac-ethyl (TE), could reduce uneven shoot growth from high N fertility and improve putting green ball roll distances. Field experiments were conducted from April to August 2003 and 2004 in Clemson, SC to investigate effects of ammonium nitrate applied at 6, 12, 18, or 24 kg N/ha per week with TE applied at 0 or 0.05 kg a.i. per ha every 3 weeks on `TifEagle' bermudagrass ball roll distances (BRD). BRD were measured weekly with a 38-cm stimpmeter in the morning (900 to 1100 hr) and evening (>1700 hr) beginning 1 wk after initial TE treatments. Interactions were not detected among N, TE, or time of day. TE increased BRD about 15% from non-TE treated. BRD was reduced with increased N rate and from am to pm; however, bermudagrass treated with TE averaged 10% longer PM BRD than am distances of non-TE treated. Overall, increased N fertility and diurnal shoot growth may reduce BRD but TE will be an effective tool for mitigating these effects on bermudagrass putting greens. Chemical name used: [4-(cyclopropyl-[α]-hydroxymethylene)-3,5-dioxo-cyclohexane carboxylic acid ethyl ester] (trinexapac-ethyl).

Free access

Mark J. Gatschet, Charles M. Taliaferro, Jeffrey A. Anderson, David R. Porter, and Michael P. Anderson

Cold acclimation (CA) of `Midiron' and `Tifgreen' turf bermudagrasses (Cynodon dactylon L. Pers. × C. transvaalensis Burtt-Davy) induced tolerance to lower freezing temperatures and altered protein synthesis in crowns. LT50 (lethal temperature for 50% of plants) values were lowered ≈5C after 4 weeks in controlled-environment chambers under CA [8/2C (day/night) cycles with a 10-hour photoperiod] vs. non-CA (28/24C) conditions. LT50 values for `Midiron' plants decreased from -6.5 to -11.3C after CA and from -3.6 to -8.5C for `Tifgreen'. Proteins synthesized by isolated crowns were radiolabeled in vivo for 16 hours with 35 S-methionine and 35 S-cysteine. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography revealed increased synthesis of several cold-regulated (COR) proteins in CA crowns of both cultivars. Synthesis of intermediate molecular weight (MW) (32 to 37 kDa) and low-MW (20 to 26 kDa) COR proteins was greater in `Midiron' than `Tifgreen' crowns.

Free access

Lambert B. McCarty, Raymond K. McCauley, Haibo Liu, F. Wesley Totten, and Joe E. Toler

Overseeded perennial ryegrass (Lolium perenne L.) aggressively competes with bermudagrass [Cynodon dactylon (L.) Pers.] for resources and may adversely affect spring transition by releasing allelochemicals into the environment. Growth chamber studies examined germination and growth of ‘Arizona Common’ bermudagrass in soil amended with 0%, 2%, 12%, or 23% perennial ryegrass root or shoot debris or in soil treated with irrigation water in which perennial ryegrass roots at 0, 5, 10, or 20 g·L−1 or shoots at 0, 10, or 20 g·L−1 had been soaked. Inhibitory effects on bermudagrass germination and growth were most extensive when soil was amended with ryegrass shoot debris, because germination, root ash weight, root length density, and root mass density were reduced 33%, 55%, 30%, and 52%, respectively. Soil amended with ryegrass root debris only inhibited bermudagrass-specific root length. Application of irrigation water containing either ryegrass root or shoot extracts only inhibited bermudagrass-specific root length. In conclusion, results obtained when soil was amended with shoot debris demonstrated perennial ryegrass can inhibit bermudagrass germination and growth in controlled environments.