Search Results

You are looking at 111 - 120 of 802 items for :

  • net photosynthesis x
  • Refine by Access: All x
Clear All
Free access

Keith Birkhold, Rebecca Darnell, and Karen Koch

179 ORAL SESSION (Abstr. 715-722) CROSS-COMMODITY PHOTOSYNTHESIS

Free access

Keith Birkhold, Rebecca Darnell, and Karen Koch

179 ORAL SESSION (Abstr. 715-722) CROSS-COMMODITY PHOTOSYNTHESIS

Free access

M.W. van Iersel and B. Bugbee

Long-term, whole-crop CO2 exchange measurements can be used to study factors affecting crop growth. These factors include daily carbon gain, cumulative carbon gain, and carbon use efficiency, which cannot be determined from short-term measurements. We describe a system that measures semicontinuously crop CO2 exchange in 10 chambers over a period of weeks or months. Exchange of CO2 in every chamber can be measured at 5 min intervals. The system was designed to be placed inside a growth chamber, with additional environmental control provided by the individual gas exchange chambers. The system was calibrated by generating CO2 from NaHCO3 inside the chambers, which indicated that accuracy of the measurements was good (102% and 98% recovery for two separate photosynthesis systems). Since the systems measure net photosynthesis (Pnet, positive) and dark respiration (Rdark, negative), the data can be used to estimate gross photosynthesis, daily carbon gain, cumulative carbon gain, and carbon use efficiency. Continuous whole-crop measurements are a valuable tool that complements leaf photosynthesis measurements. Multiple chambers allow for replication and comparison among several environmental or cultural treatments that may affect crop growth. Example data from a 2 week study with petunia (Petunia ×hybrida Hort. Vilm.-Andr.) are presented to illustrate some of the capabilities of this system.

Free access

Sorkel Kadir, Said Ennahli, and Ben Glass

Interactive effects of different temperature regimes and anti-transpiration organic materials, Surround WP (kaolinite clay) and Raynox (sun-protectant), on two strawberry (Fragaria ×ananassa) cvs. Chandler and Sweet Charlie were investigated under controlled environmental conditions. Newly planted strawberries treated with Surround and Raynox were subjected to 20/15, 30/25, and 40/35 °C (day/night) temperature regimes and 16 day/8 night photoperiod in growth chambers for 42 d. Photosynthesis (A) and photochemical efficiency (Fv/Fm) were measured at 7-d intervals during the experiment. Plants treated with Raynox displayed greater resistance to high temperature (40/35 °C) compared to those treated with Surround. Net photosynthesis of both cultivars decreased significantly with time at 40/35 °C. There was no significant difference in photosynthetic rate between the two cultivars. Nevertheless, there was difference in plant biomass between the cultivars. Raynox provided more protection against high temperature, specifically in reducing stomatal conductance and limiting transpiration, than Surround.

Free access

J. Ryan Stewart and William R. Graves

Rhamnus caroliniana Walt. (carolina buckthorn or indian cherry) is an attractive small tree or shrub found in diverse habitats in the United States. Because the species occurs in both mesic and xeric soils, we questioned whether selections of carolina buckthorn could be marketed as new nursery crops resistant to both drought and flooding. Our first objective was to characterize how soil water affects growth and gas exchange of carolina buckthorn. We studied potted plants subjected to soil moistures that ranged from complete submersion of the root zone to severe drought (7% soil water by volume). The maximal photosynthetic rate occurred at 27% soil water content, and complete submersion killed plants. Our second objective was to compare responses of carolina buckthorn to those of the invasive common buckthorn (Rhamnus cathartica L.) when potted plants were treated with partial flooding of root zones and drought. Carolina buckthorn resisted deleterious effects of partial flooding. In contrast, leaves of common buckthorn became epinastic, and rates of photosynthesis were low (2.14 μmol CO2/m2/s) after 17 days of treatment. Mean photosynthesis of common buckthorn increased to 5.52 μmol CO2/m2/s, a rate similar to that of carolina buckthorn, after 55 days of treatment. Drought reduced net photosynthesis by 52% and 68%, respectively, for carolina buckthorn and common buckthorn relative to rates of plants in the control treatment. We conclude that carolina buckthorn is capable of maintaining carbon fixation and growth over a wide range of soil water contents, and unlike common buckthorn, is not dependent upon morphological, anatomical, or physiological adjustments to optimize growth and net photosynthesis in extremely wet soil. Use of carolina buckthorn as an ornamental is warranted if invasiveness and other potential problems with the species are not identified.

Free access

Marc W. van Iersel

Bedding plants are exposed to a wide range of environmental conditions, both during production and in the landscape. This research compared the effect of short-term temperature changes on the CO2 exchange rates of four popular bedding plants species. Net photosynthesis (Pnet) and dark respiration (Rdark) of geranium (Pelargonium ×hortorum L.H. Bail.), marigold (Tagetes patula L.), pansy (Viola ×wittrockiana Gams.), and petunia (Petunia ×hybrida Hort. Vilm.-Andr.) were measured at temperatures ranging from 8 to 38 °C (for Pnet) and 6 to 36 °C (for Rdark). Net photosynthesis of all species was maximal at 14 to 15 °C, while Rdark of all four species increased exponentially with increasing temperature. Gross photosynthesis (Pgross) was estimated as the sum of Pnet and Rdark, and was greater for petunia than for the other three species. Gross photosynthesis was less sensitive to temperature than either Pnet or Rdark, suggesting that temperature effects on Pnet were caused mainly by increased respiration at higher temperatures. Gas exchange-temperature response curves were not useful in determining the heat tolerance of these species. There were significant differences among species in the estimated Rdark at 0 °C and the Q10 for Rdark. Differences in the Q10 for Rdark were related to growth rate and plant size. Large plants had a greater Q10 for Rdark, apparently because these plants had a higher ratio of maintenance to growth respiration than small plants. The Q10 of the maintenance respiration coefficient was estimated from the correlation between the Q10 and relative growth rate, and was found to be 2.5 to 2.6.

Free access

Bruce W. Wood, Jerry A. Payne, and Michael T. Smith

A 4-year field study on pecan [Carya illinoinensis (Wangenh.) K. Koch] provided indirect support of the supposition held by some U.S. pecan growers that air-blast foliar sprays of potassium nitrate (KNO3) plus surfactant enhances nut yield. While these treatments did not measurably influence yield components, foliar K nutrition, or net photosynthesis, they did suppress “yellow-type” aphid populations. While air-blast sprays of water alone suppressed aphid populations, the inclusion of KNO3 plus surfactant provided an additional level of suppression.

Free access

D. Giovannini, D.M. Glenn, and R. Scorza

The objective was to study selected physiological characteristics of the canopy and examine changes in dry matter partitioning between the root and shoot in two genetically reduced size growth types (dwarf and pillar) relative to the standard growth type. The dwarf phenotype had reduced leaf/root ratio, less allocation of dry matter to woody tissue and more to leaf tissue, high net photosynthesis, and lower leaf respiration compared to the standard and pillar phenotypes. The dwarf and pillar types had greater resistance to water flow than the standard type. Genetic changes in growth habit significantly alter many physiological parameters of peach tree growth and structure.

Full access

Bruce W. Wood

Of 18 commonly used adjuvants evaluated on pecan [Carya illinoinensis (Wangenh) K. Koch], a few exhibited potential for substantially suppressing net photosynthesis (A) and the conductance of foliage to water vapor (g sw) when used within their recommended concentration range; however, most provided no evidence of adversely influencing A or g sw. Suppression of gas exchange by certain adjuvants persisted at least 14 days after a single application. The recently developed organosilicone-based surfactants generally exhibited the greatest potential for suppression. These data indicate that orchard managers should consider the potential adverse influence of certain adjuvants when developing orchard management strategies.

Free access

Jeffrey Adelberg, Kazuhiro Fujiwara, Chalermpol Kirdmanee, and Toyoki Kozai

Growth and net photosynthetic rates of shoots of a triploid melon clone, `(L-14 × B) × L-14', were observed over 21 days following transfer from a multiplication MS medium containing 3% sucrose and 10 μM BA to a shoot development medium containing 1 μM BA at varying levels of sucrose in the medium (0%, 1%, and 3%), and light (50, 100, and 150 PPF) and CO2 (500, 1000, and 1500 ppm) in the headspace. Largest numbers of shoot buds were observed in media with 3% sucrose. Increased light and CO2 had a positive interactive effect. Fresh and dry weights were greatest at highest levels of sucrose, light, and CO2. Although there was less growth in the absence of sucrose, fresh or dry weight of shoot buds grown without sucrose in the media still doubled over the 21 days of culture. Net photosynthetic rates of buds were negative 4 days after initiation of culture and approximately zero after 20 days of treatment. When transferring buds to fresh, sugar-free media, net photosynthetic rates became highly positive. Buds that had been cultured in the absence of sucrose and at highest light levels had the highest net photosynthesis rates upon transfer to fresh, sugar-free media.