Search Results

You are looking at 111 - 120 of 713 items for :

  • "systematics" x
  • Refine by Access: All x
Clear All
Free access

Deron Caplan, Mike Dixon, and Youbin Zheng

In the expanding North American medical cannabis industry, growers lack reliable and systematically investigated information on the horticultural management of their crops, especially with regard to nutrient management and growing substrates. To evaluate organic substrates and their optimal nutrient management, five rates that supplied 57, 113, 170, 226, and 283 mg N/L of a liquid organic fertilizer (2.00N–0.87P–3.32K) were applied to container-grown plants [Cannabis sativa L. ‘WP:Med (Wappa)’] in two coir-based organic substrates. The trial was conducted in a walk-in growth chamber and the two substrates used were ABcann UNIMIX 2-HP (U2-HP) with lower container capacity (CC) and ABcann UNIMIX 2 (U2) with higher CC. U2-HP produced 11% higher floral dry weight (yield), 13% higher growth index (GI), 20% higher ∆9-tetrahydrocannabinol (THC) concentration, 57% higher THC yield (per plant), 22% higher Δ9-tetrahydrocannabidiolic acid (THCA) yield, and 20% higher cannabigerolic acid (CBGA) yield than U2. Increasing fertilizer rate led to increased growth and yield but also to a dilution of THC, THCA, and CBGA. In U2-HP, to maximize both yield and cannabinoid yield, the optimal organic fertilizer rates were those which supplied 212–261 mg N/L. For U2, the highest applied rate, that supplied 283 mg N/L, maximized yield; although lower rates delivered higher cannabinoid concentrations in dry floral material. The results on these substrates and recommended fertilizer rates can serve as a guide when using other organic fertilizers and substrates; although results may differ with cannabis variety.

Free access

R.B.H. Wills and M.A. Warton

A systematic study was conducted on the ability of potassium permanganate absorbent to remove low levels of ethylene from the atmosphere. Absorption of potassium permanganate onto alumina beads by dipping in a saturated solution was maximal at 2 g/100 g after 2 hours at 20 °C and 4 g/100 g after 1 hour at 65 °C. Commercial alumina-based absorbents were found to contain potassium permanganate at 2.7 to 6.0 g/100 g suggesting many are prepared at elevated temperature. Trials in a closed system at 20 °C and 60% to 70% RH with alumina beads containing potassium permanganate at 4 g/100 g showed a logarithmic decrease in ethylene concentration with 90% of the ethylene removed after 2.5 to 3.0 hours. Relative humidity (RH) had a marked inverse effect on ethylene absorption with reactivity at 100% RH calculated to be 15% of that at 0% RH. Performance of potassium permanganate where ethylene was continually generated by a continuous flow of ethylene at 14 μL·h-1 through the container showed a steady state was attained within 1 hour and maintained for 24 hours. Ethylene removal increased linearly with bead weight and ranged from 30% with 1 g to 90% with 50 g. Examination over 20 days showed a continuing decrease in rate of ethylene removal which after 14 days had declined to 10% of incoming ethylene although 44% of the original level of potassium permanganate still remained in the beads. Calculations based on known endogenous ethylene production rates suggest that at 20 °C and 90% RH, use of a potassium permanganate-alumina absorbent would be beneficial with produce having a low level of ethylene generation. Suitability for larger packages of produce generating higher ethylene levels is questionable as >1 kg of absorbent may be required.

Free access

Jeffrey A. Anderson

Acute high-temperature stress affects plant protein structure, leading to denaturation and aggregation. Although folding states of individual proteins have been extensively studied, little information is available on protein thermostability in complex mixtures. The objective of this study was to systematically examine protein stabilizing and destabilizing factors in pepper (Capsicum annuum L.) leaf extracts using light transmission measurements. Increasing turbidity and subsequent precipitation were monitored in heated extracts as changes in light scattering at 540 nm. Factors evaluated included leaf tissue concentration, buffer pH, compounds that can stabilize enzymatic activity (chelating agent, complexer of phenolics, and a compatible solute), and destabilizing agents (nonionic detergent and divalent cation). Leaf extract thermostability decreased with increasing tissue concentration from 6 to 60 g fresh weight per liter of buffer. Turbidity and precipitation occurred after exposure to higher temperatures as buffer pH increased from 6.0 to 7.0. Ethylenediaminetetraacetic acid (chelating agent) and polyvinylpolypyrrolidone (complexer of alkaloids and phenolics) had relatively small effects on extract thermostability. Nonionic detergent (Tween 20) destabilized extract thermostability, especially when incorporated in the extraction buffer. Calcium reduced thermostability by about 2 °C when added as CaCl2 at 1 mm. Calcium caused an increase in turbidity that was not directly associated with protein complexes and was not affected by treatment temperature. Mannitol, a compatible solute, increased the temperature at which turbidity and precipitation were induced, but only at high (500 mm) concentrations. Agents that stabilize or destabilize proteins at high temperatures can be assayed in plant extracts by measuring turbidity changes at 540 nm. These findings can be applied to functional studies determining the basis for differences in thermotolerance between genotypes and between control and acclimated tissues.

Free access

William A. Hoch, Geunhwa Jung, and Brent H. McCown

A significant pest affecting commonly planted Betula spp. is the birch leafminer (Fenusa pusilla Lepeletier), an insect that can be present in large populations in the landscape and can greatly reduce the vigor and ornamental value of these trees. Twenty-two interspecific crosses were performed between leafminer resistant and susceptible Betula species in an attempt to create the novel combination of ornamental white bark and significant leafminer resistance. Of the nine successful crosses, two produced resistant offspring. Progeny of the diploid × hexaploid cross B. turkestanica Litvin (2x) × B. alleghaniensis Britt. (6x) displayed a broad range of resistance levels, likely the result of segregating alleles contributed by the hexaploid parent. All crosses involving highly resistant individuals of B. costata Trautv. (2x) yielded leafminer susceptible progeny. These results suggest that the larval antibiosis demonstrated by B. alleghaniensis and B. costata is inherited as a recessive trait, and exhibits a gene dosage effect as evidenced by the B. turkestanica × B. alleghaniensis offspring. While most progeny of the B. populifolia Marsh (2x) × B. maximowicziana Regal (2x) cross were susceptible, a single resistant offspring, which was found to be triploid (3x), displayed a mechanism of resistance similar to that of a hypersensitive response. No strong intersectional barriers to hybridization were observed and all interploidy crosses were successful. The chromosome numbers of B. costata (2n = 2x = 28) and B. turkestanica (2n = 2x = 28) are reported here for the first time. The results of this study indicate that the potential exists for the development of insect resistant, ornamental white-barked birch clones through the implementation of a planned, systematic breeding program.

Full access

Kenneth A. Shackel, H. Ahmadi, W. Biasi, R. Buchner, D. Goldhamer, S. Gurusinghe, J. Hasey, D. Kester, B. Krueger, B. Lampinen, G. McGourty, W. Micke, E. Mitcham, B. Olson, K. Pelletrau, H. Philips, D. Ramos, L. Schwankl, S. Sibbett, R. Snyder, S. Southwick, M. Stevenson, M. Thorpe, S. Weinbaum, and J. Yeager

To be useful for indicating plant water needs, any measure of plant stress should be closely related to some of the known short- and medium-term plant stress responses, such as stomatal closure and reduced rates of expansive growth. Midday stem water potential has proven to be a useful index of stress in a number of fruit tree species. Day-to-day fluctuations in stem water potential under well-irrigated conditions are well correlated with midday vapor-pressure deficit, and, hence, a nonstressed baseline can be predicted. Measuring stem water potential helped explain the results of a 3-year deficit irrigation study in mature prunes, which showed that deficit irrigation could have either positive or negative impacts on tree productivity, depending on soil conditions. Mild to moderate water stress was economically beneficial. In almond, stem water potential was closely related to overall tree growth as measured by increases in trunk cross-sectional area. In cherry, stem water potential was correlated with leaf stomatal conductance and rates of shoot growth, with shoot growth essentially stopping once stem water potential dropped to between −1.5 to −1.7 MPa. In pear, fruit size and other fruit quality attributes (soluble solids, color) were all closely associated with stem water potential. In many of these field studies, systematic tree-to-tree differences in water status were large enough to obscure irrigation treatment effects. Hence, in the absence of a plant-based measure of water stress, it may be difficult to determine whether the lack of an irrigation treatment effect indicates the lack of a physiological response to plant water status, or rather is due to treatment ineffectiveness in influencing plant water status. These data indicate that stem water potential can be used to quantify stress reliably and guide irrigation decisions on a site-specific basis.

Free access

Richard L. Fery and James M. Schalk

1 Research Geneticist. 2 Research Entomologist. We acknowledge M.A. Lacey and S. Nakahara, Systematic Entomology Laboratory, Beltsville Agricultural Research Center, Agr. Res. Serv./U.S. Dept. Agr. ARS/USDA) Beltsville, Md., for the

Free access

Beth Ann A. Workmaster and Jiwan P. Palta

`Stevens' cranberry (Vaccinium macrocarpon Ait.) terminal bud freezing stress resistance was assessed by nonlinear regression utilizing relative scoring of the post-thaw bud growth and development based on defined bud stages 2 weeks following controlled freezing tests. Bud stages tested were chosen based on a phenology profile from each sampling date throughout the spring season. Previous year (overwintering) leaf freezing stress resistance was evaluated after both 2 days (injury) and 2 weeks (survival). The Gompertz function with a bootstrapping method was used to estimate the tissues' relative freezing stress resistance as the LT50. Bud injury levels (LT50) were expressed as the temperatures at which the mean potential regrowth capability was impaired by 50%, as compared with the unfrozen controls. In leaves, the LT50 is the temperature at which 50% injury (2-day evaluation) or survival (2-week evaluation) was modeled to occur. Dramatic changes in terminal bud relative freezing stress resistance occurred both within and between the tight and swollen bud stages. These results clearly show that seasonal changes in freezing stress resistance do not necessarily parallel changes in crop phenology and bud development. These results indicate that some physiological, biochemical, or fine anatomical changes may explain the seasonal loss in hardiness within a visual bud stage. Previous year leaves may possess the ability to recover from freeze-induced injury, as leaf survival was found to be the most reliable indicator of cranberry leaf hardiness. Major shifts in phenology and bud and leaf hardiness coincided with the rise of minimum canopy-level air temperatures to above freezing. The nonlinear regression technique utilized made it possible to estimate LT50 with data points comprising half or more of the sigmoidal dose response curve. Our study provides precise and quantitative estimates of the cold hardiness changes in cranberry terminal buds and leaves in spring. From precise estimates we were able to define critical temperatures for the impairment of cranberry bud growth. This is the first systematic study of cranberry terminal bud cold hardiness and spring bud development in relation to changes in the soil and air temperatures under natural conditions. Our study shows that regrowth assessment of the cranberry upright inherently describes the composite effects of freezing stress on plant health.

Open access

Jinxin Wang, Tao Luo, He Zhang, Jianzhu Shao, Jianying Peng, and Jianshe Sun

Hormones have an important role in apple flower bud differentiation; therefore, it is necessary to systematically explore the dynamic changes of endogenous hormones during flower and leaf bud development to elucidate the potential hormone regulation mechanism. In this study, we first observed the buds of ‘Tianhong 2’ apple during their differentiation stage using an anatomical method and divided them into physiologically differentiated stages of spur terminal buds, flower buds, and leaf buds. Then, we determined the contents of zeatin riboside (ZR), abscisic acid (ABA), auxin (IAA), and gibberellin (GA3) in these various types of buds using an enzyme-linked immunosorbent assay. The results showed that the content of ZR and the ratio of ZR to IAA in spur terminal buds decreased significantly during physiological differentiation. The contents of ZR, IAA, and GA3 in leaf buds culminated at the initial differentiation stage. The content of ZR in flower buds was significantly higher than that in leaf buds after formation of the inflorescence primordium and sepal primordium. Before the appearance of stamen primordium, the content of GA3 in flower buds was remarkably lower than that in leaf buds. The ratios of ABA/IAA and ZR/IAA in flower buds were significantly higher than those in leaf buds before the appearance of flower organ primordium. Moreover, ABA content, ABA/ZR, and ABA/GA3 in flower buds were higher than those in leaf buds throughout the whole flower bud morphological differentiation process. Therefore, the reduced ZR content was beneficial to floral induction. The low content of GA3, and high ratios of ABA/IAA and ZR/IAA were conducive to early morphological differentiation. In addition, high ratios of ABA/GA3 and ABA/ZR were beneficial to the morphological differentiation of flower buds. Moreover, the high ABA content was beneficial to floral induction and morphological differentiation of flower buds. Our results shed light on the mechanisms of hormonal regulation of apple flower bud differentiation and could potentially strengthen the theoretical basis for artificial regulation of apple flower bud development using exogenous plant hormones.

Full access

Cooperative learning activities can engage students in the learning process and aid in developing useful skills for future employment. Sánchez and Craig (p. 254) report that several cooperative learning activities are used in the plant systematics course at

Free access

Robert E. Marra

. $119.00, Softcover. ISBN 978-0-89054-367-2. Taxonomic rearrangements have been the hallmark of contemporary fungal systematics, as molecular data have contributed to the clarification of otherwise recalcitrant and as it turns out polyphyletic clades